期刊文献+
共找到334,225篇文章
< 1 2 250 >
每页显示 20 50 100
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
1
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 Topological optimization Protective structure genetic algorithm SURVIVABILITY VULNERABILITY
下载PDF
Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem
2
作者 Zakir Hussain Ahmed Habibollah Haron Abdullah Al-Tameem 《Computers, Materials & Continua》 SCIE EI 2024年第5期2399-2425,共27页
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes... Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances. 展开更多
关键词 Travelling salesman problem genetic algorithms crossover operator mutation operator comprehensive sequential constructive crossover insertion mutation
下载PDF
Solar Radiation Estimation Based on a New Combined Approach of Artificial Neural Networks (ANN) and Genetic Algorithms (GA) in South Algeria
3
作者 Djeldjli Halima Benatiallah Djelloul +3 位作者 Ghasri Mehdi Tanougast Camel Benatiallah Ali Benabdelkrim Bouchra 《Computers, Materials & Continua》 SCIE EI 2024年第6期4725-4740,共16页
When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global s... When designing solar systems and assessing the effectiveness of their many uses,estimating sun irradiance is a crucial first step.This study examined three approaches(ANN,GA-ANN,and ANFIS)for estimating daily global solar radiation(GSR)in the south of Algeria:Adrar,Ouargla,and Bechar.The proposed hybrid GA-ANN model,based on genetic algorithm-based optimization,was developed to improve the ANN model.The GA-ANN and ANFIS models performed better than the standalone ANN-based model,with GA-ANN being better suited for forecasting in all sites,and it performed the best with the best values in the testing phase of Coefficient of Determination(R=0.9005),Mean Absolute Percentage Error(MAPE=8.40%),and Relative Root Mean Square Error(rRMSE=12.56%).Nevertheless,the ANFIS model outperformed the GA-ANN model in forecasting daily GSR,with the best values of indicators when testing the model being R=0.9374,MAPE=7.78%,and rRMSE=10.54%.Generally,we may conclude that the initial ANN stand-alone model performance when forecasting solar radiation has been improved,and the results obtained after injecting the genetic algorithm into the ANN to optimize its weights were satisfactory.The model can be used to forecast daily GSR in dry climates and other climates and may also be helpful in selecting solar energy system installations and sizes. 展开更多
关键词 Solar energy systems genetic algorithm neural networks hybrid adaptive neuro fuzzy inference system solar radiation
下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
4
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network genetic algorithms Back propagation model (BP model) OPTIMIZATION
下载PDF
Multisensor Fuzzy Stochastic Fusion Based on Genetic Algorithms 被引量:3
5
作者 胡昌振 谭惠民 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期49-54,共6页
To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the ... To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively. 展开更多
关键词 MULTISENSOR data fusion fuzzy random genetic algorithm
下载PDF
APPROXIMATION TECHNIQUES FOR APPLICATION OF GENETIC ALGORITHMS TO STRUCTURAL OPTIMIZATION 被引量:1
6
作者 金海波 丁运亮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期147-154,共8页
Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str... Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model. 展开更多
关键词 approximation techniques segment approximation model genetic algorithms structural optimization sensitivity analysis
下载PDF
DENSE DISPARITY MAP ESTIMATION USING GENETIC ALGORITHMS 被引量:1
7
作者 王彪 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期184-191,共8页
An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a mu... An approach to addressing the stereo correspondence problem is presented using genetic algorithms (GAs) to obtain a dense disparity map. Different from previous methods, this approach casts the stereo matching as a multi-extrema optimization problem such that finding the fittest solution from a set of potential disparity maps. Among a wide variety of optimization techniques, GAs are proven to be potentially effective methods for the global optimization problems with large search space. With this idea, each disparity map is viewed as an individual and the disparity values are encoded as chromosomes, so each individual has lots of chromosomes in the approach. Then, several matching constraints are formulated into an objective function, and GAs are used to search the global optimal solution for the problem. Furthermore, the coarse-to-fine strategy has been embedded in the approach so as to reduce the matching ambiguity and the time consumption. Finally, experimental results on synthetic and real images show the performance of the work. 展开更多
关键词 stereo correspondence disparity map genetic algorithms coarse-to-fine strategy
下载PDF
Error analysis on heading determination via genetic algorithms 被引量:1
8
作者 Zhong Bing Xu Jiangning Ma Heng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期673-676,共4页
A new error analysis method is presented via genetic algorithms for high precise heading determination model based on two total positioning stations (TPSs). The method has the ability to search all possible solution... A new error analysis method is presented via genetic algorithms for high precise heading determination model based on two total positioning stations (TPSs). The method has the ability to search all possible solution space by the genetic operators of elitist model and restriction. The result of analyzing the error of this model shows that the accuracy of this model is precise enough to meet the need of calibration for navigation systems on ship, and the search space is only 0. 03% of the total search space, and the precision of heading determination is 4" in a general dock. 展开更多
关键词 heading determination SGA genetic algorithms.
下载PDF
Optimal Seat Suspension Design Using Genetic Algorithms 被引量:3
9
作者 Wael Abbas Ossama B. Abouelatta +2 位作者 Magdy El-Azab Mamdouh El-Saidy Adel A. Megahed 《Journal of Mechanics Engineering and Automation》 2011年第1期44-52,共9页
The linear seat suspension is considered due to the low cost consideration therefore, the optimal linear seat suspension design method can be used for this purpose. In this paper, the design of a passive vehicle seat ... The linear seat suspension is considered due to the low cost consideration therefore, the optimal linear seat suspension design method can be used for this purpose. In this paper, the design of a passive vehicle seat suspension system was handled in the framework of linear optimization. The variance of the dynamic load resulting from the vibrating vehicle operating at a constant speed was used as the performance measure of a suspension system. Using 4-DOF human body model developed by Abbas et al., with linear seat suspension and coupled with half car model. A genetic algorithm is applied to solve the linear optimization problem. The optimal design parameters of the seat suspension systems obtained are kse = 3 012.5 N/m and cse = 1 210.4 N.s/m, respectively. 展开更多
关键词 Biodynamic response seated human models SIMULATION genetic algorithms.
下载PDF
Optimization of Linear Antenna Arrays Based on Genetic Algorithms
10
作者 王宏建 高本庆 刘瑞祥 《Journal of Beijing Institute of Technology》 EI CAS 2002年第2期180-183,共4页
The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda arra... The methods of moment and genetic algorithm (GA) are combined to optimize the Yagi Uda antenna array and Log periodic dipole antenna (LPDA) array. The element lengths and spacing are optimized for the Yagi Uda array; while the ratio factor of spacing to length as well as the ratio of length to diameter of the elements are optimized for LPDA array. The results show that the main parameters, such as gain and pattern, have been improved apparently; and the high back lobe level of LPDA can be reduced greatly, therefore, GA is a very competent method for optimizing the linear array as well as in other fields. 展开更多
关键词 GAIN front to back ratio genetic algorithm OPTIMIZATION Yagi Uda antenna Log periodic dipole antenna
下载PDF
RESEARCH ON THE MINIMUM ZONE CYLINDRICITY EVALUATION BASED ON GENETIC ALGORITHMS 被引量:9
11
作者 Cui ChangcaiChe RenshengYe DongHuang QingchengDepartment of Automatic Measurement and Control,Harbin Institute of Technology, Harbin 150001, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第2期167-170,共4页
A genetic algorithm (GA)-based method is proposed to solve the nonlinearoptimization problem of minimum zone cylindricity evaluation. First, the background of the problemis introduced. Then the mathematical model and ... A genetic algorithm (GA)-based method is proposed to solve the nonlinearoptimization problem of minimum zone cylindricity evaluation. First, the background of the problemis introduced. Then the mathematical model and the fitness function are derived from themathematical definition of dimensioning and tolerancing principles. Thirdly with the least squaressolution as the initial values, the whole implementation process of the algorithm is realized inwhich some key techniques, for example, variables representing, population initializing and suchbasic operations as selection, crossover and mutation, are discussed in detail. Finally, examplesare quoted to verify the proposed algorithm. The computation results indicate that the GA-basedoptimization method performs well on cylindricity evaluation. The outstanding advantages concludehigh accuracy, high efficiency and capabilities of solving complicated nonlinear and large spaceproblems. 展开更多
关键词 genetic algorithm (GA) CYLINDRICITY form error minimum zone
下载PDF
Forward and backward models for fault diagnosis based on parallel genetic algorithms 被引量:10
12
作者 Yi LIU Ying LI +1 位作者 Yi-jia CAO Chuang-xin GUO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第10期1420-1425,共6页
In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of faul... In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems. 展开更多
关键词 Forward and backward models Fault diagnosis Global single-population master-slave genetic algorithms (GPGAs) Parallel computation
下载PDF
A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments 被引量:9
13
作者 Shengxiang Yang Renato Tinós 《International Journal of Automation and computing》 EI 2007年第3期243-254,共12页
Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the ... Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have attracted a growing interest from the genetic algorithm community in recent years. Several approaches have been developed to enhance the performance of genetic algorithms in dynamic environments. One approach is to maintain the diversity of the population via random immigrants. This paper proposes a hybrid immigrants scheme that combines the concepts of elitism, dualism and random immigrants for genetic algorithms to address dynamic optimization problems. In this hybrid scheme, the best individual, i.e., the elite, from the previous generation and its dual individual are retrieved as the bases to create immigrants via traditional mutation scheme. These elitism-based and dualism-based immigrants together with some random immigrants are substituted into the current population, replacing the worst individuals in the population. These three kinds of immigrants aim to address environmental changes of slight, medium and significant degrees respectively and hence efficiently adapt genetic algorithms to dynamic environments that are subject to different severities of changes. Based on a series of systematically constructed dynamic test problems, experiments are carried out to investigate the performance of genetic algorithms with the hybrid immigrants scheme and traditional random immigrants scheme. Experimental results validate the efficiency of the proposed hybrid immigrants scheme for improving the performance of genetic algorithms in dynamic environments. 展开更多
关键词 genetic algorithms random immigrants elitism-based immigrants DUALISM dynamic optimization problems.
下载PDF
Job shop scheduling problem with alternative machines using genetic algorithms 被引量:10
14
作者 I.A.Chaudhry 《Journal of Central South University》 SCIE EI CAS 2012年第5期1322-1333,共12页
The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job ther... The classical job shop scheduling problem(JSP) is the most popular machine scheduling model in practice and is known as NP-hard.The formulation of the JSP is based on the assumption that for each part type or job there is only one process plan that prescribes the sequence of operations and the machine on which each operation has to be performed.However,JSP with alternative machines for various operations is an extension of the classical JSP,which allows an operation to be processed by any machine from a given set of machines.Since this problem requires an additional decision of machine allocation during scheduling,it is much more complex than JSP.We present a domain independent genetic algorithm(GA) approach for the job shop scheduling problem with alternative machines.The GA is implemented in a spreadsheet environment.The performance of the proposed GA is analyzed by comparing with various problem instances taken from the literatures.The result shows that the proposed GA is competitive with the existing approaches.A simplified approach that would be beneficial to both practitioners and researchers is presented for solving scheduling problems with alternative machines. 展开更多
关键词 alternative machine genetic algorithm (GA) job shop scheduling SPREADSHEET
下载PDF
Sequencing Mixed-model Production Systems by Modified Multi-objective Genetic Algorithms 被引量:5
15
作者 WANG Binggang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期537-546,共10页
As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul... As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm. 展开更多
关键词 mixed-model production system SEQUENCING parallel machine BUFFERS multi-objective genetic algorithm multi-objective simulated annealing algorithm
下载PDF
Simultaneous scheduling of machines and automated guided vehicles in flexible manufacturing systems using genetic algorithms 被引量:5
16
作者 I.A.Chaudhry S.Mahmood M.Shami 《Journal of Central South University》 SCIE EI CAS 2011年第5期1473-1486,共14页
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde... The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model. 展开更多
关键词 automated guided vehicles (AGVs) SCHEDULING JOB-SHOP genetic algorithms flexible manufacturing system (FMS) SPREADSHEET
下载PDF
Optimization of perforation distribution for horizontal wells based on genetic algorithms 被引量:4
17
作者 Wang Zhiming Wei Jianguang +2 位作者 Zhang Jian Gong Bin Yan Haiyun 《Petroleum Science》 SCIE CAS CSCD 2010年第2期232-238,共7页
Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimi... Early water breakthrough and a rapid increase in water cut are always observed in high- permeability completion intervals when perforations are uniformly distributed in the wellbore in heterogeneous reservoirs. Optimization of perforating parameters in partitioned sections in horizontal intervals helps homogenize the inflow from the reservoir and thus is critically important for enhanced oil recovery. This paper derives a coupled reservoir-wellbore flow model based on inflow controlling theory. Genetic algorithms are applied to solving the model as they excel in obtaining the global optimum of discrete functions. The optimized perforating strategy applies a low perforation density in high- permeability intervals and a high perforation density in low-permeability intervals. As a result, the inflow profile is homogenized and idealized. 展开更多
关键词 Well completion perforation optimization genetic algorithms PARTITION horizontal well
下载PDF
Tuning PID Parameters Based on a Combination of the Expert System and the Improved Genetic Algorithms 被引量:3
18
作者 Zuo Xin Zhang Junfeng Luo Xionglin 《Petroleum Science》 SCIE CAS CSCD 2005年第4期71-76,共6页
a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic... a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic algorithms, namely rapid convergence and attainment of the global optimum. Utilization of an orthogonal experiment method solves the determination of the genetic factors. Combination with an expert system can make best use of the actual experience of the plant operators. Simulation results of typical process systems examples show a good control performance and robustness. 展开更多
关键词 PID parameters tuning orthogonal experiment method genetic algorithm expert system
下载PDF
A thorough study on genetic algorithms in feedback-based wavefront shaping 被引量:4
19
作者 Daixuan Wu Jiawei Luo +1 位作者 Zhaohui Li Yuecheng Shen 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2019年第4期94-104,共11页
Feedback-based wavefront shaping focuses light through scattering media by employing phase optimization algorithms.Genetic algorithms(GAs),inspired by the process of natural selection,are well suited for phase optimiz... Feedback-based wavefront shaping focuses light through scattering media by employing phase optimization algorithms.Genetic algorithms(GAs),inspired by the process of natural selection,are well suited for phase optimization in wavelfront shaping problems.In 2012,Conkey et al.first introduced a GA into feedback-based wavefront shaping to find the optimum phase map.Since then,due to its siuperior performance in noisy environment,the GA has been widely adopted by lots of implementations.However,there have been limited studies discussing and optimizing the detailed procedures of the GA.To fill this blank,in this study,we performed a thorough study on the performance of the GA for focusing light through scattering media.Using numerical tools,we evaluated certain procedures that can be potentially improved and provided guidance on how to choose certain parameters appropriately.This study is beneficial in improving the performance of wavefront shaping systems with GAs. 展开更多
关键词 genetice algorithm wavefront shaping scattering media adaptive optics
下载PDF
Smooth constraint inversion technique in genetic algorithms and its application to surface wave study in the Tibetan Plateau 被引量:3
20
作者 吴建平 明跃红 曾融生 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2001年第1期49-57,共9页
Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be g... Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be greatly suppressed and all the models in population will tend to equal in a few iterations, so the optimal solution meeting requirement can not be obtained. In this paper, an indirect smooth constraint technique is introduced to genetic inversion. In this method, the new models produced in iteration are smoothed, then used as theoretical models in calculation of misfit function, but in process of iteration only the original models are used in order to keep the diversity of models. The technique is effective in inversion of surface wave and receiver function. Using this technique, we invert the phase velocity of Raleigh wave in the Tibetan Plateau, revealing the horizontal variation of S wave velocity structure near the center of the Tibetan Plateau. The results show that the S wave velocity in the north is relatively lower than that in the south. For most paths there is a lower velocity zone with 12-25 km thick at the depth of 15-40 km. The lower velocity zone in upper mantle is located below the depth of 100 km, and the thickness is usually 40-80 km, but for a few paths reach to 100 km thick. Among the area of Ando, Maqi and Ushu stations, there is an obvious lower velocity zone with the lowest velocity of 4.2-4.3 km/s at the depth of 90-230 km. Based on the S wave velocity structures of different paths and former data, we infer that the subduction of the Indian Plate is delimited nearby the Yarlung Zangbo suture zone. 展开更多
关键词 genetic algorithm smooth constraint surface wave S wave velocity structure Tibetan Plateau
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部