期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Genetic Regression Model for Dam Safety Monitoring 被引量:2
1
作者 马震岳 陈维江 董毓新 《Transactions of Tianjin University》 EI CAS 2002年第3期196-199,共4页
Under-fitting problems usually occur in regression models for dam safety monitoring.To overcome the local convergence of the regression, a genetic algorithm (GA) was proposed using a real parameter coding, a ranking s... Under-fitting problems usually occur in regression models for dam safety monitoring.To overcome the local convergence of the regression, a genetic algorithm (GA) was proposed using a real parameter coding, a ranking selection operator, an arithmetical crossover operator and a uniform mutation operator, and calculated the least-square error of the observed and computed values as its fitness function. The elitist strategy was used to improve the speed of the convergence. After that, the modified genetic algorithm was applied to reassess the coefficients of the regression model and a genetic regression model was set up. As an example, a slotted gravity dam in the Northeast of China was introduced. The computational results show that the genetic regression model can solve the under-fitting problems perfectly. 展开更多
关键词 dam safety monitoring under-fitting genetic regression model
下载PDF
Selection of regression models for predicting strength and deformability properties of rocks using GA 被引量:9
2
作者 Manouchehrian Amin Sharifzadeh Mostafa +1 位作者 Hamidzadeh Moghadam Rasoul Nouri Tohid 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期492-498,共7页
Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models... Recently,many regression models have been presented for prediction of mechanical parameters of rocks regarding to rock index properties.Although statistical analysis is a common method for developing regression models,but still selection of suitable transformation of the independent variables in a regression model is diffcult.In this paper,a genetic algorithm(GA)has been employed as a heuristic search method for selection of best transformation of the independent variables(some index properties of rocks)in regression models for prediction of uniaxial compressive strength(UCS)and modulus of elasticity(E).Firstly,multiple linear regression(MLR)analysis was performed on a data set to establish predictive models.Then,two GA models were developed in which root mean squared error(RMSE)was defned as ftness function.Results have shown that GA models are more precise than MLR models and are able to explain the relation between the intrinsic strength/elasticity properties and index properties of rocks by simple formulation and accepted accuracy. 展开更多
关键词 regression models genetic algorithms Heuristics Uniaxial compressive strength Modulus of elasticity Rock index property
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部