为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算...为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算法进行改进优化。采用双向搜索策略,在起点和终点同时运行改进后的RRT算法和蚁群算法,相向而行,对路径长度和运行时间进行优化。针对生成路径不够平滑等问题,引入B样条曲线平滑策略优化路径。仿真结果表明,所提算法能够有效用于机器人三维路径规划。展开更多
针对多部干扰机协同干扰多部雷达的干扰资源分配问题,提出一种基于遗传-蚁群融合算法的干扰资源分配算法。首先采用综合集成赋权法结合逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)对...针对多部干扰机协同干扰多部雷达的干扰资源分配问题,提出一种基于遗传-蚁群融合算法的干扰资源分配算法。首先采用综合集成赋权法结合逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)对目标雷达进行威胁评估,然后建立干扰资源多约束优化分配模型,最后采用遗传-蚁群融合算法对模型进行求解。融合算法利用遗传算法快速寻找出若干组优化解,将这些优化解用于调整蚁群算法中初始信息素的分布,利用蚁群算法对问题进一步优化,从而找到最优解,提升了算法的求解精度和求解时间。仿真结果表明,融合算法的性能在收敛速度和寻优准确性等方面相较于其他算法都有了较大提升。展开更多
Focusing on the problem that the ant colony algorithm gets into stagnation easily and cannot fully search in solution space,a text clustering approach based on the fusion of the ant colony and genetic algorithms is pr...Focusing on the problem that the ant colony algorithm gets into stagnation easily and cannot fully search in solution space,a text clustering approach based on the fusion of the ant colony and genetic algorithms is proposed.The four parameters that influence the performance of the ant colony algorithm are encoded as chromosomes,thereby the fitness function,selection,crossover and mutation operator are designed to find the combination of optimal parameters through a number of iteration,and then it is applied to text clustering.The simulation results show that compared with the classical k-means clustering and the basic ant colony clustering algorithm,the proposed algorithm has better performance and the value of F-Measure is enhanced by 5.69%,48.60%and 69.60%,respectively,in 3 test datasets.Therefore,it is more suitable for processing a larger dataset.展开更多
文摘为解决快速扩展随机树算法(rapid-exploration random tree,RRT*)在三维环境中盲目搜索路径以及缺乏节点扩展记忆性等问题,提出一种融合蚁群算法的双向搜索算法ACO-RRT*。为适应精细化三维建模环境和解决地面起伏不平坦等问题,对RRT*算法进行改进优化。采用双向搜索策略,在起点和终点同时运行改进后的RRT算法和蚁群算法,相向而行,对路径长度和运行时间进行优化。针对生成路径不够平滑等问题,引入B样条曲线平滑策略优化路径。仿真结果表明,所提算法能够有效用于机器人三维路径规划。
文摘针对多部干扰机协同干扰多部雷达的干扰资源分配问题,提出一种基于遗传-蚁群融合算法的干扰资源分配算法。首先采用综合集成赋权法结合逼近理想解排序法(technique for order preference by similarity to an ideal solution,TOPSIS)对目标雷达进行威胁评估,然后建立干扰资源多约束优化分配模型,最后采用遗传-蚁群融合算法对模型进行求解。融合算法利用遗传算法快速寻找出若干组优化解,将这些优化解用于调整蚁群算法中初始信息素的分布,利用蚁群算法对问题进一步优化,从而找到最优解,提升了算法的求解精度和求解时间。仿真结果表明,融合算法的性能在收敛速度和寻优准确性等方面相较于其他算法都有了较大提升。
基金supported by the Hi-Tech Research and Development Program of China (No.2006AA01Z210).
文摘Focusing on the problem that the ant colony algorithm gets into stagnation easily and cannot fully search in solution space,a text clustering approach based on the fusion of the ant colony and genetic algorithms is proposed.The four parameters that influence the performance of the ant colony algorithm are encoded as chromosomes,thereby the fitness function,selection,crossover and mutation operator are designed to find the combination of optimal parameters through a number of iteration,and then it is applied to text clustering.The simulation results show that compared with the classical k-means clustering and the basic ant colony clustering algorithm,the proposed algorithm has better performance and the value of F-Measure is enhanced by 5.69%,48.60%and 69.60%,respectively,in 3 test datasets.Therefore,it is more suitable for processing a larger dataset.