According to the previously published CSFV sequences, 18 pairs of primers have been designed and synthesized, which cover the entire genome of CSFV strain Shimen. Each cDNA fragment has been amplified by RT-PCR from t...According to the previously published CSFV sequences, 18 pairs of primers have been designed and synthesized, which cover the entire genome of CSFV strain Shimen. Each cDNA fragment has been amplified by RT-PCR from the anticoagulant blood of strain Shimen infected pig. The PCR products have been cloned respectively and sequenced. Results show that the cDNA library of strain Shimen and its nucleotide sequence have been obtained. The genomic RNA of strain Shimen is 12 298 nucleotides in length, containing a 5’ and a 3’ noncoding region 373 and 231 nt long respectively. The center of genome is a single large open reading frame of 11 697 nt which encodes a polyprotein of 3 898 amino acids. The entire sequence of strain Shimen has also been compared with that of other CSFV strains.展开更多
According to the previously published CSFV sequences, 18 paris of partially overlapping primers which span the entire genome of CSFV strain Shimen were designed and synthesized. Each cDNA fragment of strain Shimen was...According to the previously published CSFV sequences, 18 paris of partially overlapping primers which span the entire genome of CSFV strain Shimen were designed and synthesized. Each cDNA fragment of strain Shimen was amplified by RT-PCR method from the anticoagulant blood of strain Shimen infected pig. The PCR fragments were cloned into pGEM-T vector respectively and sequenced. The results show that we have obtained the nucleotide sequence of strain Shimen. The viral RNA consists of 12 297 nucleotides including noncoding regions of 373 and 227 bases at the 5′ and 3′ end, respectively, and a single large open reading frame spanning 11 697 nucleotides in the middle, which encodes an amino acid sequence of 3 989 residues with a calculated molecular weight of 437.6×103. The precisely sequencing of 5′ and 3′ termini is undertaking.展开更多
Full genomic sequence of a newly isolated persistent infection strain of classical swine fever virus was firstly determined. It was demonstrated by sequence analyses that nucleotides homologies of this strain compared...Full genomic sequence of a newly isolated persistent infection strain of classical swine fever virus was firstly determined. It was demonstrated by sequence analyses that nucleotides homologies of this strain compared with virulent Shimen and vaccine HCLV were 89.7%and 87.7%, and homologies of amino acids were 94.8%and 93.3%, respectively. The sequencing results primarily suggest a tighter relationship between this persistent infection strain and virulent Shimen strain than vaccine HCLV strain.展开更多
Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain o...Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain of CSFV, also known as C-strain, was developed in China in the mid-1950s. In the past half a century, the vaccine has been proved to be safe and immunogenic in pigs of essentially any age. It is of high efficacy, providing immunized animals with broad-spectrum, sometimes lifelong, protection, which is contributed by both cell-mediated immunity and humoral immunity, against essentially all genotypes or subgenotypes of the virus. The maternal antibodies derived from immunized sows can confer solid protection of their offspring from disease; however, they have been proved to inhibit the successful active immunization of C-strain vaccine. The complete genomes of C-strain and dozens of established or field strains have been sequenced and annotated. Recently, the reverse genetics system of C-strain has been developed, resulting in several C- strain-derived candidate marker vaccines. Many countries manage to control or even eradicate CSF with the aid of mass vaccination with C-strain. in spite of these efforts, the eradication of the disease worldwide remains a big challenge and needs to go a long way, and provably still resorts to genetically modified C-strain vaccine. The authors present an overview of the characteristics of the vaccine, which has stood the test of half a century.展开更多
No cytopathic effect (CPE) can be observed on classical swine fever virus (CSFV) infected cell culture in vitro. This brings an obstacle to the researches on reciprocity between CSFV and host cells. Based on the const...No cytopathic effect (CPE) can be observed on classical swine fever virus (CSFV) infected cell culture in vitro. This brings an obstacle to the researches on reciprocity between CSFV and host cells. Based on the construction of full-length genomic infectious Cdna clone of Chinese CSFV standard virulent Shimen strain, partial deletion is intro- duced into genomic Cdna to obtain a 7.5 kb subgenomic Cdna. A new subgenomic CSFV is derived from transfection with the subgenomic Cdna on PK-15 cells pre-infected by CSFV Shimen virus. Typical CPE induced by this subgenomic virus is observed on PK-15 cells. Coexistence of wild- type and subgenomic virus in cytopathic cell culture is dem- onstrated by RT-PCR detection in cytopathic cells. For conclusion, the construction of cytopathic cell model exploited a new way for researches on the molecular mechanism of CSFV pathogenesis.展开更多
文摘According to the previously published CSFV sequences, 18 pairs of primers have been designed and synthesized, which cover the entire genome of CSFV strain Shimen. Each cDNA fragment has been amplified by RT-PCR from the anticoagulant blood of strain Shimen infected pig. The PCR products have been cloned respectively and sequenced. Results show that the cDNA library of strain Shimen and its nucleotide sequence have been obtained. The genomic RNA of strain Shimen is 12 298 nucleotides in length, containing a 5’ and a 3’ noncoding region 373 and 231 nt long respectively. The center of genome is a single large open reading frame of 11 697 nt which encodes a polyprotein of 3 898 amino acids. The entire sequence of strain Shimen has also been compared with that of other CSFV strains.
文摘According to the previously published CSFV sequences, 18 paris of partially overlapping primers which span the entire genome of CSFV strain Shimen were designed and synthesized. Each cDNA fragment of strain Shimen was amplified by RT-PCR method from the anticoagulant blood of strain Shimen infected pig. The PCR fragments were cloned into pGEM-T vector respectively and sequenced. The results show that we have obtained the nucleotide sequence of strain Shimen. The viral RNA consists of 12 297 nucleotides including noncoding regions of 373 and 227 bases at the 5′ and 3′ end, respectively, and a single large open reading frame spanning 11 697 nucleotides in the middle, which encodes an amino acid sequence of 3 989 residues with a calculated molecular weight of 437.6×103. The precisely sequencing of 5′ and 3′ termini is undertaking.
基金Supported by National Basic Research Developmental Project ( G19990 1190 0 ) . Gen Bank NO.:AF40 7339
文摘Full genomic sequence of a newly isolated persistent infection strain of classical swine fever virus was firstly determined. It was demonstrated by sequence analyses that nucleotides homologies of this strain compared with virulent Shimen and vaccine HCLV were 89.7%and 87.7%, and homologies of amino acids were 94.8%and 93.3%, respectively. The sequencing results primarily suggest a tighter relationship between this persistent infection strain and virulent Shimen strain than vaccine HCLV strain.
文摘Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain of CSFV, also known as C-strain, was developed in China in the mid-1950s. In the past half a century, the vaccine has been proved to be safe and immunogenic in pigs of essentially any age. It is of high efficacy, providing immunized animals with broad-spectrum, sometimes lifelong, protection, which is contributed by both cell-mediated immunity and humoral immunity, against essentially all genotypes or subgenotypes of the virus. The maternal antibodies derived from immunized sows can confer solid protection of their offspring from disease; however, they have been proved to inhibit the successful active immunization of C-strain vaccine. The complete genomes of C-strain and dozens of established or field strains have been sequenced and annotated. Recently, the reverse genetics system of C-strain has been developed, resulting in several C- strain-derived candidate marker vaccines. Many countries manage to control or even eradicate CSF with the aid of mass vaccination with C-strain. in spite of these efforts, the eradication of the disease worldwide remains a big challenge and needs to go a long way, and provably still resorts to genetically modified C-strain vaccine. The authors present an overview of the characteristics of the vaccine, which has stood the test of half a century.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.30240080 and 30170214)the National Basic Research Developmental Projects(Grant No.G1999011900).
文摘No cytopathic effect (CPE) can be observed on classical swine fever virus (CSFV) infected cell culture in vitro. This brings an obstacle to the researches on reciprocity between CSFV and host cells. Based on the construction of full-length genomic infectious Cdna clone of Chinese CSFV standard virulent Shimen strain, partial deletion is intro- duced into genomic Cdna to obtain a 7.5 kb subgenomic Cdna. A new subgenomic CSFV is derived from transfection with the subgenomic Cdna on PK-15 cells pre-infected by CSFV Shimen virus. Typical CPE induced by this subgenomic virus is observed on PK-15 cells. Coexistence of wild- type and subgenomic virus in cytopathic cell culture is dem- onstrated by RT-PCR detection in cytopathic cells. For conclusion, the construction of cytopathic cell model exploited a new way for researches on the molecular mechanism of CSFV pathogenesis.