期刊文献+
共找到2,761篇文章
< 1 2 139 >
每页显示 20 50 100
Genome-edited rabbits:Unleashing the potential of a promising experimental animal model across diverse diseases 被引量:1
1
作者 Yang Han Jiale Zhou +3 位作者 Renquan Zhang Yuru Liang Liangxue Lai Zhanjun Li 《Zoological Research》 SCIE CSCD 2024年第2期253-262,共10页
Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The fie... Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine. 展开更多
关键词 genome editing Animal model RABBIT CRISPR/Cas9 Genetic diseases
下载PDF
The chromosome-level genome of double-petal phenotype jasmine provides insights into the biosynthesis of floral scent 被引量:1
2
作者 Xiangyu Qi Huadi Wang +7 位作者 Shuyun Liu Shuangshuang Chen Jing Feng Huijie Chen Ziyi Qin Quanming Chen Ikram Blilou Yanming Deng 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期259-272,共14页
Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study... Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study,using PacBio,Illumina,10×Genomics and highthroughput chromosome conformation capture(Hi-C)sequencing technologies,a high-quality chromosome-level reference genome for J.sambac was obtained,exploiting a double-petal phenotype cultivar‘Shuangbanmoli’(JSSB).The results showed that the final assembled genome of JSSB is 580.33 Mb in size(contig N50=1.05 Mb;scaffold N50=45.07 Mb)with a total of 39618 predicted protein-coding genes.Our analyses revealed that the JSSB genome has undergone an ancient whole-genome duplication(WGD)event at 91.68 million years ago(Mya).It was estimated that J.sambac diverged from the lineage leading to Olea europaea and Osmanthus fragrans about 28.8 Mya.On the basis of a combination of genomic,transcriptomic and metabolomic analyses,a range of floral scent volatiles and genes were identified involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways.The results provide new insights into the molecular mechanism of its fragrance biosynthesis in jasmine. 展开更多
关键词 Jasminum sambac Aiton OLEACEAE genome evolution Floral scent Terpene synthase
下载PDF
Gapless Genome Assembly of ZH8015 and Preliminary Multi-Omics Analysis to Investigate ZH8015's Responses Against Brown Planthopper Infestation
3
作者 LI Dian DUAN Wenjing +5 位作者 LIU Qun’en WU Weixun ZHAN Xiaodeng SUN Lianping ZHANG Yingxin CHENG Shihua 《Rice science》 SCIE CSCD 2024年第3期317-327,I0042-I0045,共15页
Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties.This study presented a gapless genome assembly of the indica rice cultivar Zhonghui 8015(ZH8015)using Pac Bi... Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties.This study presented a gapless genome assembly of the indica rice cultivar Zhonghui 8015(ZH8015)using Pac Bio HiFi,Hi-C,and ONT(Oxford Nanopore Technologies)ultra-long sequencing technologies,annotating 43037 gene structures.Subsequently,utilizing this genome along with transcriptomic and metabolomic techniques,we explored ZH8015's response to brown planthopper(BPH)infestation.Continuous transcriptomic sampling indicated significant changes in gene expression levels around 48 h after BPH feeding.Enrichment analysis revealed particularly significant alterations in genes related to reactive oxygen species scavenging and cell wall formation.Metabolomic results demonstrated marked increases in levels of several monosaccharides,which are components of the cell wall and dramatic changes in flavonoid contents.Omics association analysis identified differentially expressed genes associated with key metabolites,shedding light on ZH8015's response to BPH infestation.In summary,this study constructed a reliable genome sequence resource for ZH8015,and the preliminary multi-omics results will guide future insect-resistant breeding research. 展开更多
关键词 brown planthopper gapless genome genome assembly multi-omics Nilaparvata lugens rice
下载PDF
Phylogenetic study on Scenedesmacae with the description of a new genus Coccoidesmus gen.nov.(Chlorophyceae,Chlorophyta)and chloroplast genome analyses
4
作者 Qinghua WANG Ying HOU +2 位作者 Yanhui LI Ying SHI Guoxiang LIU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1272-1285,共14页
Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,th... Members of the family Scenedesmaceae are some of the most common algal taxa in inland ecosystems,and they are widely distributed in freshwaters,aerial,and sub-aerial habitats.With the continuous updating of methods,the classic morphological taxonomy of this family needs to be revised.In recent years,many genera of Scenedesmaceae have been established via the use of molecular methods.The phylogenetic relationships within Scenedesmaceae were analyzed using different molecular markers and morphological data,and the new freshwater genus Coccoidesmus Wang,Hou et Liu gen.nov.was described.Two new species in this genus were also described.Phylogenetic analysis based on tufA genes revealed that the new genus formed an independent clade closely related to Comasiella.However,these two genera are characterized by significant morphological differences in colony arrangement and cell shape.The chloroplast genome of the type species was assembled and annotated,and analyses of genome structure and sequences were conducted.More genome data could help clarify the phylogenetic relationships within this family. 展开更多
关键词 PHYLOGENETIC Scenedesmaceae Coccoidesmus morphology chloroplast genome
下载PDF
The Clausena lansium genome provides new insights into alkaloid diversity and the evolution of the methyltransferase family
5
作者 Yongzan Wei Yi Wang +9 位作者 Fuchu Hu Wei Wang Changbin Wei Bingqiang Xu Liqin Liu Huayang Li Can Wang Hongna Zhang Zhenchang Liang Jianghui Xie 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3537-3553,共17页
Wampee(Clausena lansium)is an important evergreen fruit tree native to southern China that has a long history of use for medicinal purposes.Here,a chromosome-level genome of C.lansium was constructed with a genome siz... Wampee(Clausena lansium)is an important evergreen fruit tree native to southern China that has a long history of use for medicinal purposes.Here,a chromosome-level genome of C.lansium was constructed with a genome size of 282.9 Mb and scaffold N50 of 30.75 Mb.The assembled genome contains 48.70%repetitive elements and 24,381 protein-coding genes.Comparative genomic analysis showed that C.lansium diverged from Aurantioideae 15.91-24.95 million years ago.Additionally,some expansive and specific gene families related to methyltransferase activity and S-adenosylmethionine-dependent methyltransferase activity were also identified.Further analysis indicated that N-methyltransferase(NMT)is mainly involved in alkaloid biosynthesis and O-methyltransferase(OMT)participates in the regulation of coumarin accumulation in wampee.This suggested that wampee's richness in alkaloids and coumarins might be due to the gene expansions of NMT and OMT.The tandem repeat event was one of the major reasons for the NMT expansion.Hence,the reference genome of C.lansium will facilitate the identification of some useful medicinal compounds from wampee resources and reveal their biosynthetic pathways. 展开更多
关键词 Clausena lansium genome EVOLUTION methyltransferase activity alkaloid biosynthesis coumarin accumulation
下载PDF
Epistasis-aware genome-wide association studies provide insights into the efficient breeding of high-yield and high-quality rice
6
作者 Xiaogang He Zirong Li +6 位作者 Sicheng Guo Xingfei Zheng Chunhai Liu Zijie Liu Yongxin Li Zheming Yuan Lanzhi Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2541-2556,共16页
Marker-assisted selection(MAS)and genomic selection(GS)breeding have greatly improved the efficiency of rice breeding.Due to the influences of epistasis and gene pleiotropy,ensuring the actual breeding effect of MAS a... Marker-assisted selection(MAS)and genomic selection(GS)breeding have greatly improved the efficiency of rice breeding.Due to the influences of epistasis and gene pleiotropy,ensuring the actual breeding effect of MAS and GS is still a difficult challenge to overcome.In this study,113 indica rice varieties(V)and their 565 testcross hybrids(TC)were used as the materials to investigate the genetic basis of 12 quality traits and nine agronomic traits.The original traits and general combining ability of the parents,as well as the original traits and midparent heterosis of TC,were subjected to genome-wide association analysis.In total,381 primary significantly associated loci(SAL)and 1,759 secondary SALs that had epistatic interactions with these primary SALs were detected.Among these loci,322 candidate genes located within or nearby the SALs were screened,204 of which were cloned genes.A total of 39 MAS molecular modules that are beneficial for trait improvement were identified by pyramiding the superior haplotypes of candidate genes and desirable epistatic alleles of the secondary SALs.All the SALs were used to construct genetic networks,in which 91 pleiotropic loci were investigated.Additionally,we estimated the accuracy of genomic prediction in the parent V and TC by incorporating either no SALs,primary SALs,secondary SALs or epistatic effect SALs as covariates.Although the prediction accuracies of the four models were generally not significantly different in the TC dataset,the incorporation of primary SALs,secondary SALs,and epistatic effect SALs significantly improved the prediction accuracies of 5(26%),3(16%),and 11(58%)traits in the V dataset,respectively.These results suggested that SALs and epistatic effect SALs identified based on an additive genotype can provide considerable predictive power for the parental lines.They also provide insights into the genetic basis of complex traits and valuable information for molecular breeding in rice. 展开更多
关键词 rice genome-wide association study EPISTASIS gene pleiotropy maker-associated selection genome selection
下载PDF
3D genome organization and its study in livestock breeding
7
作者 Jie Cheng Xiukai Cao +7 位作者 Shengxuan Wang Jiaqiang Zhang Binglin Yue Xiaoyan Zhang Yongzhen Huang Xianyong Lan Gang Ren Hong Chen 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期39-58,共20页
Eukaryotic genomes are hierarchically packaged into cell nucleus,affecting gene regulation.The genome is organized into multiscale structural units,including chromosome territories,compartments,topologically associati... Eukaryotic genomes are hierarchically packaged into cell nucleus,affecting gene regulation.The genome is organized into multiscale structural units,including chromosome territories,compartments,topologically associating domains(TADs),and DNA loops.The identification of these hierarchical structures has benefited from the development of experimental approaches,such as 3C-based methods(Hi-C,ChIA-PET,etc.),imaging tools(2D-FISH,3D-FISH,Cryo-FISH,etc.)and ligation-free methods(GAM,SPRITE,etc.).In recent two decades,numerous studies have shown that the 3D organization of genome plays essential roles in multiple cellular processes via various mechanisms,such as regulating enhancer activity and promoter-enhancer interactions.However,there are relatively few studies about the 3D genome in livestock species.Therefore,studies for exploring the function of 3D genomes in livestock are urgently needed to provide a more comprehensive understanding of potential relationships between the genome and production traits.In this review,we summarize the recent advances of 3D genomics and its biological functions in human and mouse studies,drawing inspiration to explore the 3D genomics of livestock species.We then mainly focus on the biological functions of 3D genome organization in muscle development and its implications in animal breeding. 展开更多
关键词 3D genome organization 3D genomic methodology regulatory mechanisms muscle development livestock breeding
下载PDF
Mitochondrial genomes of Tapes dorsatus and Cardita variegata:insights into Heteroconchia phylogeny
8
作者 Xumin WANG Hua ZHANG +6 位作者 Xindong TENG Wenhui SUN Zhikai XING Shuang WANG Xiumei LIU Jiangyong QU Lijun WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期943-959,共17页
Heteroconchia,a widespread and abundant aquatic invertebrate,is an important clade of bivalve mollusks.The relationship between the three branches of Heteroconchia,Palaeoheterodonta,Archiheterodonta,and Euheterodonta ... Heteroconchia,a widespread and abundant aquatic invertebrate,is an important clade of bivalve mollusks.The relationship between the three branches of Heteroconchia,Palaeoheterodonta,Archiheterodonta,and Euheterodonta has become a main controversy in molecular studies of the relationships between bivalves.In the present study,we assembled the complete mitochondrial genomes of Tapes dorsatus(Veneridae)and Cardita variegata(Carditidae)using high-throughput sequencing.C.variegata is the first mitochondrial genome belonging to the family Carditidae to be reported.We used 12 protein coding genes(excluding atp8)from the complete mitochondrial genomes of 146 species to recover the internal relationships of Heteroconchia.Our results support the traditional view of early branching of Palaeoheterodonta and the recovery of the monophyly of Palaeoheterodonta,Anomalodesmata,Imparidentia.Rearrangement analysis show that gene arrangement within Venerida was highly variable.Time-calibrated phylogenetic studies based on a relaxed molecular clock model suggested that Veneridae originated approximately 337.62 million years ago(Ma)and split into two major clades,whereas Carditidae originated approximately 510.09 Ma.Our results provide evidence of the internal relationships of Heteroconchia. 展开更多
关键词 Tapes dorsatus Cardita variegata mitochondrial genome PHYLOGENY
下载PDF
A chromosome-level genome assembly for Chinese plum‘Wushancuili'reveals the molecular basis of its fruit color and susceptibility to rain-cracking
9
作者 Kun Zhou Jingwen Wang +8 位作者 Lin Pan Fang Xiang Yi Zhou Wei Xiong Ming Zeng Donald Grierson Wenbin Kong Lingyu Hu Wanpeng Xi 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期672-688,共17页
Chinese plum(Prunus salicina Lindl.)originates from China and makes a large contribution to the global production of plums.The P.salicina‘Wushancuili'has a green coloration and high fruit quality and is economica... Chinese plum(Prunus salicina Lindl.)originates from China and makes a large contribution to the global production of plums.The P.salicina‘Wushancuili'has a green coloration and high fruit quality and is economically important in eliminating poverty and protecting ecology in the Yangtze River Three Gorges Reservoir.However,rain-induced cracking(rain-cracking,literally skin cracking caused by rain)is a limitation to‘Wushancuili'fruit production and causes severe losses.This study reported a high-quality‘Wushancuili'genome assembly consisting of a 302.17-Mb sequence with eight pseudo-chromosomes and a contig N50 of 23.59 Mb through the combination of Illumina sequencing,Pacific Biosciences HiFiⅢsequencing,and high-throughput chromosome conformation capture technology.A total of 25109 protein-coding genes are predicted and 54.17%of the genome is composed of repetitive sequences.‘Wushancuili'underwent a remarkable orthoselection during evolution.Gene identification revealed that loss-of-function in four core MYB10 genes results in the anthocyanin deficiency and absence of red color,revealing the green coloration due to the residual high chlorophyll in fruit skin.Besides,the occurrence of cracking is assumed to be closely associated with cell wall modification and frequently rain-induced pathogen enrichment through transcriptomic analysis.The loss of MYB10 genes might render fruit more susceptible to pathogen-mediated cracking by weakening the epidermal strength and reactive oxygen species(ROS)scavenging.Our findings provided fundamental knowledge regarding fruit coloration and rain-cracking and will facilitate genetic improvement and cultivation management in Chinese plums. 展开更多
关键词 Chinese plum Fruit coloration Fruit epidermis genome MYB10 Rain-cracking
下载PDF
Genome sequencing provides insights into Caprifoliaceae genome evolution and the mechanism underlying second blooming phenomenon in Heptacodium miconioides
10
作者 Yueling Li Zhongshuai Sun +1 位作者 Zexin Jin Junmin Li 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期897-910,共14页
Plants of the Caprifoliaceae family are widely cultivated worldwide as ornamental plants owing to their numerous,sweet-smelling,beautiful flowers and fruits.Heptacodium miconioides Rehd.,a member of the family,is ende... Plants of the Caprifoliaceae family are widely cultivated worldwide as ornamental plants owing to their numerous,sweet-smelling,beautiful flowers and fruits.Heptacodium miconioides Rehd.,a member of the family,is endemic to eastern China and is cultivated as a popular ornamental plant in North America and European countries.It has a rather novel and beautiful trait of high horticultural value,that is,its sepals persist and enlarge,turning purplish red.Here,we report the chromosome-level genome assembly of H.miconioides to understand its evolution and floral characteristics.The 622.28 Mb assembled genome harbored a shared whole-genome duplication with a related species,Lonicera japonica.Comparative genomic analysis suggested that chromosome fission events following genome duplication underlie the unusual chromosome number of these two species,as well as chromosome fission of another five chromosomes in H.miconioides,giving rise to a haploid chromosome number of 14(versus 9 in L.japonica).In addition,based on transcriptome and chloroplast genome analysis of 17 representative species in the Caprifoliaceae,we assumed that large structural variations in the chromosomes of H.miconioides were not caused by hybridization.Changes in the candidate genes of the MADS-box family were detected in the H.miconioides genome,including AP1-,AP3-,and SEPexpanded,which might underlie the sepal elongation and development in this species.The current findings provided a critical resource for genome evolution studies in Caprifoliaceae and it was an example of how multi-omics data can elucidate the regulation of important ornamental traits. 展开更多
关键词 Heptacodium miconioides genome assembly CAPRIFOLIACEAE Chromosome fusion Sepal traits
下载PDF
Chromosome-level assembly of triploid genome of Sichuan pepper(Zanthoxylum armatum)
11
作者 Lizhi Song Yue Huang +6 位作者 Hao Zuo Ning Tang Zhengguo Li Wenbiao Jiao Feng Xu Qiang Xu Zexiong Chen 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期437-449,共13页
As an important spice species in Rutaceae, the Sichuan pepper (Zanthoxylum armatum) can provide pungent and numbing taste, as well as aroma in its mature fruit. Here we assembled a chromosome-level genome of green pri... As an important spice species in Rutaceae, the Sichuan pepper (Zanthoxylum armatum) can provide pungent and numbing taste, as well as aroma in its mature fruit. Here we assembled a chromosome-level genome of green prickly ash which was widely cultivated in a major production area including Chongqing and Sichuan province, China. We generated 712 Gb (~112×) PacBio long reads and 511 Gb (~82×) Hi-C data, and yielded an assembly of 99 pseudochromosomes with total size of 5.32 Gb and contig N50 of 796 kb. The genomic analyses and cytogenetic experiments both indicated that the cultivarZhuye Huajiao’ was a triploid. We identified a Zanthoxylum-specific whole genome duplication event emerging about 24.8 million years ago (Mya). We also detected a transposition burst event (0.3-0.4 Mya) responsible for the large genome size of Z. armatum. Metabolomic analysis of the Zanthoxylum fruits during development stages revealed profiles of39 volatile aroma compounds and 528 secondary metabolites, from which six types of sanshools were identified. Based on metabolomic and transcriptomic network analysis, we screened candidate genes encoding long chain acyl-CoA synthetase, fatty acid desaturase,branched-chain amino acid aminotransferase involved in sanshool biosynthesis and three genes encoding terpene synthase during fruit development. The multi-omics data provide insights into the evolution of Zanthoxylum and molecular basis of numbing and aroma flavor of Sichuan pepper. 展开更多
关键词 Zanthoxylum armatum genome Sanshool TERPENOID
下载PDF
A simple and efficient CRISPR/Cas9 system permits ultra-multiplex genome editing in plants
12
作者 Suting Wu Htin Kyaw +11 位作者 Zhijun Tong Yirong Yang Zhiwei Wang Liying Zhang Lihua Deng Zhiguo Zhang Bingguang Xiao William Paul Quick Tiegang Lu Guoying Xiao Guannan Qin Xue'an Cui 《The Crop Journal》 SCIE CSCD 2024年第2期569-582,共14页
The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of t... The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering. 展开更多
关键词 CRISPR/Cas9 Multiplex genome editing Assembly system PLANT
下载PDF
Molecular phylogenetic relationships based on mitochondrial genomes of novel deep-sea corals(Octocorallia:Alcyonacea):Insights into slow evolution and adaptation to extreme deep-sea environments
13
作者 Zhan-Fei Wei Kai-Wen Ta +6 位作者 Nan-Nan Zhang Shan-Shan Liu Liang Meng Kai-Qiang Liu Chong-Yang Cai Xiao-Tong Peng Chang-Wei Shao 《Zoological Research》 SCIE CSCD 2024年第1期215-225,共11页
A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea(SCS).Based on mitochondrial genomi... A total of 10 specimens of Alcyonacea corals were collected at depths ranging from 905 m to 1633 m by the manned submersible Shenhai Yongshi during two cruises in the South China Sea(SCS).Based on mitochondrial genomic characteristics,morphological examination,and sclerite scanning electron microscopy,the samples were categorized into four suborders(Calcaxonia,Holaxonia,Scleraxonia,and Stolonifera),and identified as 9 possible new cold-water coral species.Assessments of GC-skew dissimilarity,phylogenetic distance,and average nucleotide identity(ANI)revealed a slow evolutionary rate for the octocoral mitochondrial sequences.The nonsynonymous(Ka)to synonymous(Ks)substitution ratio(Ka/Ks)suggested that the 14 protein-coding genes(PCGs)were under purifying selection,likely due to specific deep-sea environmental pressures.Correlation analysis of the median Ka/Ks values of five gene families and environmental factors indicated that the genes encoding cytochrome b(cyt b)and DNA mismatch repair protein(mutS)may be influenced by environmental factors in the context of deep-sea species formation.This study highlights the slow evolutionary pace and adaptive mechanisms of deep-sea corals. 展开更多
关键词 Mitochondrial genome Alcyonacea Ka/Ks evolution Environmental factors
下载PDF
Gene characterization and phylogenetic analysis of four mitochondrial genomes in Caenogastropoda
14
作者 Jiangyong Qu Wanqi Yang +7 位作者 Xindong Teng Li Xu Dachuan Zhang Zhikai Xing Shuang Wang Xiumei Liu Lijun Wang Xumin Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期137-150,共14页
Caenogastropoda is a highly diverse group,containing~60%of all existing gastropods.Species in this subclass predominantly inhabit marine environments and have a high ecological and economic value.Owing to the increase... Caenogastropoda is a highly diverse group,containing~60%of all existing gastropods.Species in this subclass predominantly inhabit marine environments and have a high ecological and economic value.Owing to the increase in relevant phylogenetic studies,our understanding of between species relatedness in Caenogastropoda has improved.However,the biodiversity,taxonomic status,and phylogenetic relationships of this group remain unclear.In the present study,we performed next-generation sequencing of four complete mitochondrial genomes from three families(Buccinidae,Columbellidae,and Cypraeidae)and the four mitogenomes were classical circular structures,with a length of 16177 bp in Volutharpa ampullacea,16244 bp in Mitrella albuginosa,16926bp in Mauritia arabica asiatica and 15422 bp in Erronea errones.Base composition analysis indicated that whole sequences were biased toward A and T.Then compared them with 171 complete mitochondrial genomes of Caenogastropoda.The phylogenetic relationship of Caenogastropoda derived from Maximum Likelihood(ML)and Bayesian Inference(BI)trees constructed based on CDS sequences was consistent with the results of traditional morphological analysis,with all three families showing close relationships.This study supported Caenogastropoda at the molecular level as a separate clade of Mollusca.According to our divergence time estimations,Caenogastropoda was formed during the middle Triassic period(~247.2–237 Ma).Our novel mitochondrial genomes provide evidence for the speciation of Caenogastropoda in addition to elucidating the mitochondrial genomic evolution of this subclass. 展开更多
关键词 mitochondrial genome phylogenetic analysis CAENOGASTROPODA
下载PDF
Metabolic engineering and genome editing strategies for enhanced lipid production in microalgae
15
作者 ANJANI DEVI CHINTAGUNTA SAMUDRALA PRASHANT JEEVAN KUMAR NUNE SATYA SAMPATH KUMAR 《BIOCELL》 SCIE 2024年第8期1181-1195,共15页
Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enh... Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enhanced lipid production,leading towards biodiesel production.These microalgae have short life cycles,require less labor,and space,and are easy to scale up.Triacylglycerol,the primary source of lipids needed to produce biodiesel,is accumulated by most microalgae.The article focuses on different types of oleaginous microalgae,which can be used as a feedstock to produce biodiesel.Lipid biosynthesis in microalgae occurs through fatty acid synthesis and TAG synthesis approaches.In-depth discussions are held regarding other efficient methods for enhancing fatty acid and TAG synthesis,regulating TAG biosynthesis bypass methods,blocking competing pathways,multigene approach,and genome editing.The most potential targets for gene transformation are hypothesized to be a malic enzyme and diacylglycerol acyltransferase while lowering phosphoenolpyruvate carboxylase activity is reported to be advantageous for lipid synthesis. 展开更多
关键词 Oleaginous microalgae BIODIESEL TAG synthesis Metabolic engineering genome editing
下载PDF
Cryptic divergences and repeated hybridizations within the endangered “living fossil” dove tree(Davidia involucrata) revealed by whole genome resequencing
16
作者 Yumeng Ren Lushui Zhang +5 位作者 Xuchen Yang Hao Lin Yupeng Sang Landi Feng Jianquan Liu Minghui Kang 《Plant Diversity》 SCIE CAS CSCD 2024年第2期169-180,共12页
The identification and understanding of cryptic intraspecific evolutionary units(lineages) are crucial for planning effective conservation strategies aimed at preserving genetic diversity in endangered species.However... The identification and understanding of cryptic intraspecific evolutionary units(lineages) are crucial for planning effective conservation strategies aimed at preserving genetic diversity in endangered species.However, the factors driving the evolution and maintenance of these intraspecific lineages in most endangered species remain poorly understood. In this study, we conducted resequencing of 77 individuals from 22 natural populations of Davidia involucrata, a “living fossil” dove tree endemic to central and southwest China. Our analysis revealed the presence of three distinct local lineages within this endangered species, which emerged approximately 3.09 and 0.32 million years ago. These divergence events align well with the geographic and climatic oscillations that occurred across the distributional range.Additionally, we observed frequent hybridization events between the three lineages, resulting in the formation of hybrid populations in their adjacent as well as disjunct regions. These hybridizations likely arose from climate-driven population expansion and/or long-distance gene flow. Furthermore, we identified numerous environment-correlated gene variants across the total and many other genes that exhibited signals of positive evolution during the maintenance of two major local lineages. Our findings shed light on the highly dynamic evolution underlying the remarkably similar phenotype of this endangered species. Importantly, these results not only provide guidance for the development of conservation plans but also enhance our understanding of evolutionary past for this and other endangered species with similar histories. 展开更多
关键词 Davidia involucrata Cryptic lineage HYBRIDIZATION Population genomics Positive evolution
下载PDF
An Improved Chromosome-Level Genome Assembly and Annotation of Belted Beard Grunt(Hapalogenys analis)
17
作者 GAO Tianxiang WANG Yiting +3 位作者 SHI Huilai PING Hongling LIU Qi ZHANG Yang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期1026-1034,共9页
Hapalogenys analis(order Lobotiformes)is an economically and ecologically significant fish species.It is a typical sedentary rocky reef fish and is primarily found in the northern Pacific Ocean.Here,we used Hi-C and P... Hapalogenys analis(order Lobotiformes)is an economically and ecologically significant fish species.It is a typical sedentary rocky reef fish and is primarily found in the northern Pacific Ocean.Here,we used Hi-C and PacBio sequencing technique to assemble a high-quality,chromosome-level genome for this species.The 539 Mb genome had a contig N50 with a size of 3.43 Mb,while 755 contigs clustered into 24 chromosomal groups with an anchoring rate of 99.02%.Of the total genomic sequence,132.74Mb(24.39%)were annotated as repeat elements.A total of 21360 protein-coding genes were identified,of which 20787 genes(97.32%)were successfully annotated to public databases.The BUSCO evaluation indicated that 96.90%of the total orthologous genes were matched.The phylogenetic tree representing H.analis and 14 other bony fish species indicated that the H.analis genome contained 364 expanded gene families related to olfactory receptor activity,compared with the common ancestor of H.analis and Sciaenidae.Comparative genomic analysis further identified 3584 contracted gene families.Branch-site modeling identified 277 genes experiencing positive selection,which may facilitate the adaptation to rocky reef environments.The genome reported here is helpful for ecological and evolutionary studies of H.analis. 展开更多
关键词 Hapalogenys analis de novo assembly PacBio comparative genomics
下载PDF
Leveraging the potential of big genomic and phenotypic data for genome-wide association mapping in wheat
18
作者 Moritz Lell Yusheng Zhao Jochen C.Reif 《The Crop Journal》 SCIE CSCD 2024年第3期803-813,共11页
Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-s... Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-sized populations of several hundred individuals have been studied is rapidly increasing.Combining these data and using them in GWAS could increase both the power of QTL discovery and the accuracy of estimation of underlying genetic effects,but is hindered by data heterogeneity and lack of interoperability.In this study,we used genomic and phenotypic data sets,focusing on Central European winter wheat populations evaluated for heading date.We explored strategies for integrating these data and subsequently the resulting potential for GWAS.Establishing interoperability between data sets was greatly aided by some overlapping genotypes and a linear relationship between the different phenotyping protocols,resulting in high quality integrated phenotypic data.In this context,genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and experimental series,which was low in our case.Contrary to expectations,fewer associations between markers and traits were found in the larger combined data than in the individual experimental series.However,the predictive power based on the marker-trait associations of the integrated data set was higher across data sets.Therefore,the results show that the integration of medium-sized to Big Data is an approach to increase the power to detect QTL in GWAS.The results encourage further efforts to standardize and share data in the plant breeding community. 展开更多
关键词 Big Data genome-wide association study Data integration genomic prediction WHEAT
下载PDF
Comparative and Phylogenetic Analysis of the Complete Chloroplast Genomes of 19 Species in Rosaceae Family
19
作者 Riwa Mahai Rongpeng Liu +3 位作者 Xiaolang Du Zejing Mu Xiaoyun Wang Jun Yuan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第6期1203-1219,共17页
Rosaceae represents a vast and complex group of species,with its classification being intricate and contentious.The taxonomic placement of many species within this family has been a subject of ongoing debate.The study ... Rosaceae represents a vast and complex group of species,with its classification being intricate and contentious.The taxonomic placement of many species within this family has been a subject of ongoing debate.The study utilized the Illumina platform to sequence 19 plant species from 10 genera in the Rosaceae.The cp genomes,vary-ing in size from 153,366 to 159,895 bp,followed the typical quadripartite organization consisting of a large single-copy(LSC)region(84,545 to 87,883 bp),a small single-copy(SSC)region(18,174 to 19,259 bp),and a pair of inverted repeat(IR)regions(25,310 to 26,396 bp).These genomes contained 132–138 annotated genes,including 87 to 93 protein-coding genes(PCGs),37 tRNA genes,and 8 rRNA genes using MISA software,52 to 121 simple sequence repeat(SSR)loci were identified.D.arbuscular contained the least of SSRs and did not have hexanotides,A.lineata contained the richest SSRs.Long terminal repeats(LTRs)were primarily composed of palindromic and forward repeat sequences,meanwhile,The richest LTRs were found in Argentina lineata.Except for Argentina lineata,Fragariastrum eriocarpum,and Prunus trichostoma,which varied in gene type and position on both sides of the boundary,the remaining species were found to be mostly conserved according to IR boundary analysis.The examination of the Ka/Ks ratio revealed that only the infA gene had a value greater than 1,indicating that this gene was primarily subjected to positive selection during evolution.Additionally,9 hotspots of variation were identified in the LSC and SSC regions.Phylogenetic analysis confirmed the scientific validity of the genus Prunus L.sensu lato(s.l.)within the Rosaceae family.The separation of the three genera Argentina Hill,Fragariastrum Heist.ex Fabr.and Dasiphora Raf.from Potentilla L.may be a more scientific classification.These results offer fresh perspectives on the taxonomy of the Rosaceae. 展开更多
关键词 ROSACEAE chloroplast genomes comparative genomes PHYLOGENY
下载PDF
Structural Characterization of Chloroplast Genome in Alpinia japonica(Thunb.)Miq.,a Medicinal Plant of the Genus Alpinia
20
作者 Wentao Sheng Xi Lei +1 位作者 Xinjie Chen Quan Kuang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第8期1897-1911,共15页
The analysis of chloroplast gene characteristics in Alpinia japonica(Thunb.)Miq.is of great significance for developing relevant genetic resources.The high-throughput sequencing and bioinformatic research were perform... The analysis of chloroplast gene characteristics in Alpinia japonica(Thunb.)Miq.is of great significance for developing relevant genetic resources.The high-throughput sequencing and bioinformatic research were performed to analyze the chloroplast genome characteristics of A.japonica.The total chloroplast genome length of A.japonica was 161,906 bp,with a typical circular tetrameric structure.And 133 genes were annotated,comprising 87 protein-coding,38 tRNA,and 8 rRNA genes.Furthermore,22 genes contained two copies,and 18 genes owned introns.Repeat sequence analysis showed that it contains 321 simple sequence repeats(SSRs)and 37 long segment repeats.Compared with the chloroplast genomes of eight representative plants in the genus Alpinia,the gene structure,type,and quantity were relatively conservative.Rps12 was the highest variation site in the entire chloroplast gene.A phylogenetic tree showed that the genus Alpinia was the most closely related to the genus Amomum.Meanwhile,A.japonica is the most closely related to Alpinia chinensis belonging to the genus Alpinia.Overall,the chloroplast genome of a new species was reported in the genus Alpinia,and a basis was provided for the utilization of Alpinia plants as a medical resource. 展开更多
关键词 The genus Alpinia Alpinia japonica(Thunb.)Miq. CHLOROPLAST genome phylogenetic tree
下载PDF
上一页 1 2 139 下一页 到第
使用帮助 返回顶部