Wheat powdery mildew(Blumeria graminis f.sp.tritici, Bgt) is a disease of increasing importance globally due to the adoption of high yielding varieties and modern sustainable farming technologies.Growing resistant cul...Wheat powdery mildew(Blumeria graminis f.sp.tritici, Bgt) is a disease of increasing importance globally due to the adoption of high yielding varieties and modern sustainable farming technologies.Growing resistant cultivars is a preferred approach to managing this disease, and novel powdery mildew resistance genes are urgently needed for new cultivar development.A genome-wide association study was performed on a panel of 1292 wheat landraces and historical cultivars using 5011 single nucleotide polymorphism(SNP)markers.The association panel was evaluated for reactions to three Bgt inoculants, OKS(14)-B-3-1, OKS(14)-C-2-1, and Bgt15.Linkage disequilibrum(LD) analysis indicated that genome-wide LD decayed to 0.1 at 23 Mb, and population structure analysis revealed seven subgroups in the panel.Association analysis using a mixed linear model(MLM) identified three loci for powdery mildew resistance on chromosome 2 B, designated QPm.stars-2BL1,QPm.stars-2BL2, and QPm.stars-2BL3.To evaluate the efficacy of GWAS in gene discovery,QPm.stars-2BL2 was validated using F2 and F2:3 populations derived from PI420646 × OK1059060-126135-3.Linkage analysis delimited the powdery mildew resistance gene in PI 420646 to an interval where QPm.stars-2BL2 was located, lending credence to the GWAS results.QPm.stars-2BL1 and QPm.stars-2BL3, which were associated with four SNPs located at 457.7–461.7 Mb and two SNPs located at 696.6–715.9 Mb in the Chinese Spring reference IWGSC RefSeq v1.0, respectively, are likely novel loci for powdery mildew resistance and can be used in wheat breeding to improve powdery mildew resistance.展开更多
The co-chaperone DnaJ plays an important role in protein folding and regulation of various physiological activities, and participates in several pathological processes. DnaJ has been extensively studied in many specie...The co-chaperone DnaJ plays an important role in protein folding and regulation of various physiological activities, and participates in several pathological processes. DnaJ has been extensively studied in many species including humans,drosophila, mushrooms, tomatoes, and Arabidopsis. However, few studies have examined the role of DnaJ in wheat(Triticum aestivum), and the interaction mechanism between TaDnaJs and plant viruses. Here, we identified 236 TaDnaJs and performed a comprehensive genome-wide analysis of conserved domains, gene structure and protein motifs, chromosomal positions and duplication relationships, and cis-acting elements. We grouped these Ta Dna Js according to their domains, and randomly selected six genes from the groups for tissue-specific analysis, and expression profiles analysis under hormone stress, and 17 genes for plant virus infection stress. In qRT-PCR, we found that among the 17 TaDnaJ genes tested, 16 genes were up-regulated after wheat yellow mosaic virus(WYMV) infection, indicating that the TaDnaJ family is involved in plant defense response. Subsequent yeast two-hybrid assays verified the WYMV NIa, NIb and 7 KD proteins interacted with TaDJC(TraesCS7 A02 G506000), which had the most significant changes in gene expression levels after WYMV infection.Insights into the molecular mechanisms of Ta Dna J-mediated stress tolerance and sensitivity could inform different strategies designed to improve crop resistance to abiotic and biotic stress. This study provides a basis for future investigation of the TaDnaJ family and plant defense mechanisms.展开更多
Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-s...Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-sized populations of several hundred individuals have been studied is rapidly increasing.Combining these data and using them in GWAS could increase both the power of QTL discovery and the accuracy of estimation of underlying genetic effects,but is hindered by data heterogeneity and lack of interoperability.In this study,we used genomic and phenotypic data sets,focusing on Central European winter wheat populations evaluated for heading date.We explored strategies for integrating these data and subsequently the resulting potential for GWAS.Establishing interoperability between data sets was greatly aided by some overlapping genotypes and a linear relationship between the different phenotyping protocols,resulting in high quality integrated phenotypic data.In this context,genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and experimental series,which was low in our case.Contrary to expectations,fewer associations between markers and traits were found in the larger combined data than in the individual experimental series.However,the predictive power based on the marker-trait associations of the integrated data set was higher across data sets.Therefore,the results show that the integration of medium-sized to Big Data is an approach to increase the power to detect QTL in GWAS.The results encourage further efforts to standardize and share data in the plant breeding community.展开更多
Nitrogen(N)fertilizer application is essential for crop-plant growth and development.Identifying genetic loci associated with N-use efficiency(NUE)could increase wheat yields and reduce environmental pollution caused ...Nitrogen(N)fertilizer application is essential for crop-plant growth and development.Identifying genetic loci associated with N-use efficiency(NUE)could increase wheat yields and reduce environmental pollution caused by overfertilization.We subjected a panel of 389 wheat accessions to N and chlorate(a nitrate analog)treatments to identify quantitative trait loci(QTL)controlling NUE-associated traits at the wheat seedling stage.Genotyping the panel with a 660K single-nucleotide polymorphism(SNP)array,we identified 397 SNPs associated with N-sensitivity index and chlorate inhibition rate.These SNPs were merged into 49 QTL,of which eight were multi-environment stable QTL and 27 were located near previously reported QTL.A set of 135 candidate genes near the 49 QTL included TaBOX(F-box family protein)and TaERF(ethylene-responsive transcription factor).A Tabox mutant was more sensitive to low-N stress than the wild-type plant.We developed two functional markers for Hap 1,the favorable allele of TaBOX.展开更多
To balance the relationship between high yield and low nitrogen supply,the nitrogen utilization efficiency of watermelon needs to be improved urgently.Nodule inception-like Protein(NLP)transcription factors play a key...To balance the relationship between high yield and low nitrogen supply,the nitrogen utilization efficiency of watermelon needs to be improved urgently.Nodule inception-like Protein(NLP)transcription factors play a key node role in nitrate response and growth and development of plant,however,comprehensive analysis of the NLP gene family in watermelon is unclear.This study explored the functional classification,evolutionary characteristics,and expression profile of the ClNLP gene family.Three ClNLPs were categorized into three groups according to their gene structure and phylogeny.All of them contained the conserved RWP-RK and PB1 domains.Evolutionary analysis of ClNLPs revealed that ClNLP1 and ClNLP3 underwent strong purified selection.In addition,cis-acting elements related to plant hormones and abiotic stresses were present in the ClNLP promoter.According to tissue-specific analysis ClNLP was widely expressed in roots,stems,leaves,flowers and fruits,and ClNLP1 was significantly induced in the roots of different nitrogen utilization varieties under different nitrate nitrogen supply.The SRTING functional protein association network suggested that ClNLP1 is associated with most genes,such as NRT1.1,NRT2.1,NIA1,and NIR1,and the dual-luciferase reporter assay found that ClNLP1 positively regulates the expression of ClNRT2.1.We speculated that ClNLP1 might play a central role in regulating the response of watermelon to nitrate nitrogen.展开更多
The mevalonate diphosphate deearboxylase (MVD) is an essential enzyme in mevalonate (MVA) pathway that catalyzes the irreversible Mg2+ -ATP de- pendent decarboxylation of 6-carben compound mevalonate-5-diphospha...The mevalonate diphosphate deearboxylase (MVD) is an essential enzyme in mevalonate (MVA) pathway that catalyzes the irreversible Mg2+ -ATP de- pendent decarboxylation of 6-carben compound mevalonate-5-diphosphate (MVAPP) into 5-carbon isopentenyl diphosphate ( IPP), the building block of sterol and isoprenoid biosynthesis. In this study, based on the published geanme sequences and ESTs, a genome-wide search was carried out for the first time to identify MVD gene family in four genome-sequenced Euphorbiaceae plants, i.e. castor bean ( Ricinus communis), physic nut ( Jatropha curcas), cassava (Manihot esculenta) and rubber tree (Hevea brasiliensis), and to analyze the gene structure and phylogenetic characteristics. According to the experimental results, 1, 1,2 and 2 MVD genes, which all contain 9 introns, were identh'ied from castor bean, physic nut, cassava and rubber tree, respectively. Homology analysis indicates that MVD genes are widely distributed in eukaryotes, some archaea and eubacteria, which suggests an early origin of this gerte family. Although MVD genes were identified in most green plants, no homologous genes were found in unicellular green algae. In most genome-sequenced plants including castor bean and physic nut, a single copy of MVD gene was found; however, in cassava and rubber tree, two copies were identified just like that in moss, maize, Arabidopsis and poplar. "In castor bean, digital expression profiling suggests that in five examined tissues, i.e. leaf, flower, II/III stage endosperm, V/VI stage endosperm and seed, RcPMK was expressed strongly in flower and II/III stage endosperm, moderately in V/VI stage endosperm and leaf, and weakly in seed.展开更多
Wheat grain yield is generally sink-limited during grain filling.The grain-filling rate(GFR)plays a vital role but is poorly studied due to the difficulty of phenotype surveys.This study explored the grain-filling tra...Wheat grain yield is generally sink-limited during grain filling.The grain-filling rate(GFR)plays a vital role but is poorly studied due to the difficulty of phenotype surveys.This study explored the grain-filling traits in a recombinant inbred population and wheat collection using two highly saturated genetic maps for linkage analysis and genome-wide association study(GWAS).Seventeen stable additive quantitative trait loci(QTLs)were identified on chromosomes 1B,4B,and 5A.The linkage interval between IWB19555 and IWB56078 showed pleiotropic effects on GFR_(1),GFR_(max),kernel length(KL),kernel width(KW),kernel thickness(KT),and thousand kernel weight(TKW),with the phenotypic variation explained(PVE)ranging from 13.38%(KW)to 33.69%(TKW).198 significant marker-trait associations(MTAs)were distributed across most chromosomes except for 3D and 4D.The major associated sites for GFR included IWB44469(11.27%),IWB8156(12.56%)and IWB24812(14.46%).Linkage analysis suggested that IWB35850,identified through GWAS,was located in approximately the same region as QGFR_(max)2B.3-11,where two high-confidence candidate genes were present.Two important grain weight(GW)-related QTLs colocalized with grain-filling QTLs.The findings contribute to understanding the genetic architecture of the GFR and provide a basic approach to predict candidate genes for grain yield trait QTLs.展开更多
[Objective] This study aimed to establish an identification system for drought-resistance in wheat by using near-infrared diffuse reflectance spectroscopy. [Method] In 2006-2007, 36 wheat varieties with different drou...[Objective] This study aimed to establish an identification system for drought-resistance in wheat by using near-infrared diffuse reflectance spectroscopy. [Method] In 2006-2007, 36 wheat varieties with different drought resistance were selected and were classified according to their drought resistance grades determined by the Technical Specification of Identification and Evaluation for Drought Resistance in Wheat (GB/T 21127-2007). In addition, the harvested wheat seed samples were spectrally analyzed with FOSS NIRSystems5000 near-infrared spectrum analyzer for grain quality (full spectrum analyzer) and then the forecasted regression equations were established. [Result] After the establishment of a database and validation, dis- criminated functions were obtained. The determination coefficient (RSQ) and coeffi- cients of determination for cross validation (1-VR) in the discriminant function built with seed samples from water stress area were 0.846 0 and 0.781 8, respectively, which indicated that the consistency between drought resistance and spectral charac- teristics in wheat varieties was good, and there was high correlation between the near-infrared diffuse reflectance spectra of seeds and the drought resistance in wheat. [Conclusiou] Under water stress condition, it is feasible to establish a conve- nient, rapid and no-damage identification system for the drought resistance in wheat by using the near-infrared diffuse reflectance spectrum technique to scan wheat seeds.展开更多
[Objective] The aim of this study was to isolate and identify lactic acid bacteria (LAB) from wheat haulm and to select efficient strains for silage fermentation. [ Method] From 78 LAB strains isolated on the MRS so...[Objective] The aim of this study was to isolate and identify lactic acid bacteria (LAB) from wheat haulm and to select efficient strains for silage fermentation. [ Method] From 78 LAB strains isolated on the MRS solid medium containing calcium carbonate, we selected 43 strains having better acid-production ability through morphological observation, Gram staining, physiological and biochemical tests, acid production test, acid tolerance test and salt tolerance test. These strains were finally identified by sequencing 16 S rDNA. [ Result] Of the 43 LAB strains having better acid-production ability, 37 belonged to Lactobacillus paracasei subsp., one belonged to Lactobacillus rhamnosus and five belonged to Enterococcus faecium, as shown by the sequences of 16 S rDNA. [ Conclusion ] A total of 43 LAB strains having better acid-production ability were selected, which may be developed as high-quality silage additives.展开更多
Wheat powdery mildew and stripe rust are the major diseases in wheat producing area in Xinjiang.To obtain wheat germplasm resources and varieties resistant to powdery mildew and rust,36 high-generation stable strains ...Wheat powdery mildew and stripe rust are the major diseases in wheat producing area in Xinjiang.To obtain wheat germplasm resources and varieties resistant to powdery mildew and rust,36 high-generation stable strains of Xinjiang winter wheat were evaluated using the method of natural inducement from 2018 to 2020.A total of 5 strains with high resistance to powdery mildew,4 strains with slow stripe rust and 1 strain with resistance to powdery mildew and adult plant slow stripe rust were obtained.And the parental combination of disease-resistant varieties was analyzed.These studies will provide theoretical basis for the breeding of resistant wheat varieties in Xinjiang.展开更多
Plant-parasitic nematodes are very common on cereal crops and cause economic losses via reduction in grain quality and quantity. During 2014, 83 soil samples were collected from wheat and barley fields in 21 districts...Plant-parasitic nematodes are very common on cereal crops and cause economic losses via reduction in grain quality and quantity. During 2014, 83 soil samples were collected from wheat and barley fields in 21 districts of 13 provinces across five regions (CentralAnatolia, Marmara, Aegean, SoutheastAnatolia, and Black Sea Region) of Turkey. Cyst-forming nematodes were found in 66 samples (80%), and the internal transcribed spacer (ITS) sequencing and species-specific PCR identified the species in 64 samples as Heterodera filipjevi, Heterodera latipons, and Heterodera avenae. The predominant patho- genic cereal cyst nematode was H. filipjevi, which was found in all five regions surveyed. H. avenae was only detected in Southeast Anatolia whereas H. latipons was detected in Southeast Anatolia and Central Anatolia. ITS-rDNA phylogenetic analyses showed that H. avenae isolates from China clustered with H. australis, and Turkish isolates were closely related to European and USA isolates of this species. H. filipjevi from Turkey and China were clustered closely with those from the UK, Germany, Russia, and the USA. The density of many of these populations exceeded 6r approached the maximum threshold level for economic loss. To our knowledge, this is the first report of H. filipjevi in Diyarbakir, Edirne, and Kutahya provinces, and the first report of H. avenae in DiyarbakJr Province. These results exhibit the most rigorous analysis to date on the occurrence and distribution of Heterodera spp. in Turkey's major wheat-producing areas, thus providing a basis for more specific resistance breeding, as well as other management practices.展开更多
Melon(Cucumis melo),belonging to the Cucurbitaceae family,is a globally important economic crop.GRAS(GAI,RGA,SCR)genes,which are a type of transcription factor,play a critical role in plant growth and development,incl...Melon(Cucumis melo),belonging to the Cucurbitaceae family,is a globally important economic crop.GRAS(GAI,RGA,SCR)genes,which are a type of transcription factor,play a critical role in plant growth and development,including processes such as radial root patterning,light signalling,abiotic/biotic stress,axillary shoot meristem formation,and phytohormone(gibberellin)signal transduction.In this study,the GRAS family in melon was analysed comprehensively with respect to chromosomal location,motif prediction,gene structure,and expression pattern.A total of 37 GRAS genes were first identified in melon,after which a phylogenetic tree was built with the GRAS genes of three model species(Arabidopsis,rice,and sacred lotus)and were divided into nine groups based on the findings of previous studies.Motif and gene structure analysis showed typical conserved domains in all melon GRAS and similar structures in the same subfamilies.The expression analysis of GRAS genes done using RNA-seq data,showed that these genes were differentially expressed in different melon leaves under powdery mildew stress.Furthermore,the real-time quantitative PCR for GRAS genes revealed gene expression corresponding to powdery mildew stress.Our results provide useful information for a better understanding of GRAS genes and provide the foundation for additional functional exploration of the melon GRAS gene family in the powdery mildew stress response.展开更多
Thaumatin-like proteins (TLPs) play potential roles in plant resistance to various diseases. Identifying TLPs is neces-sary to determine their function and apply them to plant disease resistance. However, limited info...Thaumatin-like proteins (TLPs) play potential roles in plant resistance to various diseases. Identifying TLPs is neces-sary to determine their function and apply them to plant disease resistance. However, limited information is available about TLP-family genes in wheat, especially regarding their responses to Fusarium species, which cause Fusarium head blight in wheat. In this study, we conducted a comprehensive genome-wide survey of TLP genes in wheat and identified 129 TLP genes in the wheat genome, which were unevenly distributed on 21 wheat chromosomes, with 5A containing the highest number. Phylogenetic analysis showed that these 129 wheat TLP genes together with 24 Arabidopsis TLPs were classified into 7 groups based on the protein sequences. We systematically analyzed the genes in terms of their sequence characterization, chromosomal locations, exon-intron distribution, duplication (tandem and segmental) events and expression profiles in response to Fusarium infection. Furthermore, we analyzed differen-tially expressed TLP genes based on publicly available RNA-seq data obtained from a resistant near isogenic wheat line at different time points after Fusarium graminearum inoculation. Then, the expression of 9 differentially expressed TLP genes was confirmed by real-time PCR, and these 9 genes were all upregulated in the resistant Sumai 3 variety, which was generally consistent with the RNA-seq data. Our results provide a basis for selecting candidate wheat TLP genes for further studies to determine the biological functions of the TLP genes in wheat.展开更多
[Objective] The aim of this study is to investigate the chromosome pairing of F1 from Aegilops Ventricosa-Aegilops Cylindrica amphiploid × common wheat.[Method] Microsporogenesis and pollen development of Yannong...[Objective] The aim of this study is to investigate the chromosome pairing of F1 from Aegilops Ventricosa-Aegilops Cylindrica amphiploid × common wheat.[Method] Microsporogenesis and pollen development of Yannong15,SDAU18 and their hybrid F1 were observed cytologically by squash method.[Result] The results showed that microsporogenesis and pollen development of two parents including Yannong15 and SDAU18 were basically normal,and their seed setting was also basically normal.However,the microsporogenesis of their hybrid F1 was chaotic.Univalent and bivalent with high frequency of 10.11 and 18.29 per cell respectively occurred in meiotic MI(metphaseI) of PMC(pollen mother cell).Nevertheless,only quite low frequency of multivalents occurred in meiotic PMC MI.The laggards at meiotic AI(anaphaseI) were 5 per cell on average.The number of micronucleoli in tetrad was 4.43 per cell averagely.The aborted pollen with different frequency occurred at every stage of hybrid F1 pollen development but mainly after single nucleus pollen stage.The fertile pollen rate of hybrid F1 was only 31% at 3-nucleated stage.[Conclusion] This study provides cytogenetics basis for further analysis and utilization of the amphiploid.展开更多
In order to clarify the relationships between seedling and adult-plant resis- tance to English grain aphid Sitobion avenae (Fabricius), 94 wheat cultivars were screened and evaluated based on aphid number ratio thro...In order to clarify the relationships between seedling and adult-plant resis- tance to English grain aphid Sitobion avenae (Fabricius), 94 wheat cultivars were screened and evaluated based on aphid number ratio through artificial inoculation in greenhouse and natural infection in field from 2010 to 2012. The results indicated that 43 wheat cultivars were resistant to aphid at different levels, of which two dis- played high resistance, eight moderate resistance and 33 low resistance at adult- plant stage. Meanwhile, 45 wheat cultivars exhibited aphid resistance at seedling stage, including 5 highly-resistant cultivars, 16 moderately-resistant cultivars and 24 low-resistant cultivars. Thirty wheat cultivars showed resistance to aphids to different degrees at both seedling and adult-plant stages, accounting for 31.91% of all tested wheat cultivars, especially that C273 and Lanmai (Shaanxi Zhashui) showed high aphid resistance. Aphid number ratio of wheat cultivars at seedling stage had an extremely significant positive correlation with that at adult-plant stage. Additionally, 66 wheat cultivars exhibited the same resistance to aphids at both seedling and adult-plant stages, accounting for 70.21% of all cultivars. The study demonstrated that inoculation test at seedling stage in greenhouse is a reliable method for identi- fying wheat resistance to S. avenae.展开更多
β-amylase(BAM) is an important enzyme involved in conversion of starch to maltose in multiple biological processes in plants. However, there is currently insufficient information on the BAM gene family in the importa...β-amylase(BAM) is an important enzyme involved in conversion of starch to maltose in multiple biological processes in plants. However, there is currently insufficient information on the BAM gene family in the important fruit crop banana. This study identified 16 BAM genes in the banana genome. Phylogenetic analysis showed that Ma BAMs were classified into four subfamilies. Most Ma BAMs in each subfamily shared similar gene structures. Conserved motif analysis showed that all identified Ma BAM proteins had the typical glyco hydro14 domains. Comprehensive transcriptomic analysis of two banana genotypes revealed the expression patterns of Ma BAMs in different tissues, at various stages of fruit development and ripening, and in responses to abiotic stresses. Most Ma BAMs showed strong transcript accumulation changes during fruit development and late-stage ripening. Some Ma BAMs showed significant changes under cold, salt, and osmotic stresses. This finding indicated that Ma BAMs might be involved in regulating fruit development, ripening, and responses to abiotic stress. Analysis of five hormone-related and seven stressrelevant elements in the promoters of Ma BAMs further revealed that BAMs participated in various biological processes. This systemic analysis provides new insights into the transcriptional characteristics of the BAM genes in banana and may serve as a basis for further functional studies of such genes.展开更多
Eighty-one wheat accessions including 50 southern regional performance nursery (SRPN) lines and 31 northern regional performance nursery (NRPN) lines from the United States were tested to evaluate the growth habit...Eighty-one wheat accessions including 50 southern regional performance nursery (SRPN) lines and 31 northern regional performance nursery (NRPN) lines from the United States were tested to evaluate the growth habit by chilling treatments and to estimate the VRN allele variation with 19 pairs of published VRN primers. Two spring wheat accessions and 44 semi-spring wheat accessions were confirmed based on their chilling days' requirement and polymorphism was found at VRN loci. The Vrn-A1 allele had the highest frequency in the RPN accessions and VA1-CAPs markers identified growth habit of RPN lines. No polymorphism was found at the VRN3 loci and some polymorphism at the region of promoter and the first intron of VRN1 was not always consistent to growth habit in the wheat RPN accessions. The existence of variation in VRN alleles suggested that singly using the dominant Vrn allele is possible to extend the diversity of wheat accessions and improve their adaption to different environments in autumn-sowing region. This information will be useful for the cultivars exploitation and wheat breeding program.展开更多
[ Objective ] The paper was to determine the resistance level of the tried and pre-examination wheat cultivars against powdery mildew in Anhui Province of China. [ Method ] By using artificial inoculation and identifi...[ Objective ] The paper was to determine the resistance level of the tried and pre-examination wheat cultivars against powdery mildew in Anhui Province of China. [ Method ] By using artificial inoculation and identification method in fields, the resistance of wheat cultivars was identified in consecutive three years from 2010 to 2012. [ Result] The highly susceptible (HS) cultivar accounted for 30%, 42% and 11% of total tested cultivars in the years of 2010, 2011 and 2012, respectively; moderately susceptible (MS) cultivar accounted for 53% of total tested cuhivars in 2010, which accounted for 47% and 57% in 2011 and 2012, respectively; moderately resistant (MR) cuhivar accounted for 17% of total tested cultivars in 2010, which accounted for 11% and 32% in 2011 and 2012, respectively. [ Conclusion] The paper can guide breeding direction, and also provide scientific basis for variety approval.展开更多
文摘Wheat powdery mildew(Blumeria graminis f.sp.tritici, Bgt) is a disease of increasing importance globally due to the adoption of high yielding varieties and modern sustainable farming technologies.Growing resistant cultivars is a preferred approach to managing this disease, and novel powdery mildew resistance genes are urgently needed for new cultivar development.A genome-wide association study was performed on a panel of 1292 wheat landraces and historical cultivars using 5011 single nucleotide polymorphism(SNP)markers.The association panel was evaluated for reactions to three Bgt inoculants, OKS(14)-B-3-1, OKS(14)-C-2-1, and Bgt15.Linkage disequilibrum(LD) analysis indicated that genome-wide LD decayed to 0.1 at 23 Mb, and population structure analysis revealed seven subgroups in the panel.Association analysis using a mixed linear model(MLM) identified three loci for powdery mildew resistance on chromosome 2 B, designated QPm.stars-2BL1,QPm.stars-2BL2, and QPm.stars-2BL3.To evaluate the efficacy of GWAS in gene discovery,QPm.stars-2BL2 was validated using F2 and F2:3 populations derived from PI420646 × OK1059060-126135-3.Linkage analysis delimited the powdery mildew resistance gene in PI 420646 to an interval where QPm.stars-2BL2 was located, lending credence to the GWAS results.QPm.stars-2BL1 and QPm.stars-2BL3, which were associated with four SNPs located at 457.7–461.7 Mb and two SNPs located at 696.6–715.9 Mb in the Chinese Spring reference IWGSC RefSeq v1.0, respectively, are likely novel loci for powdery mildew resistance and can be used in wheat breeding to improve powdery mildew resistance.
基金supported by the National Key R&D Program of China(2018YFD0200507,2017YFD-0201701,and 2018YFD0200408)the National Natural Science Foundation of China(31901954)+3 种基金the Natural Science Foundation of Ningbo City,China(2019A610415 and 2019A610410)the National Key Project for Research on Transgenic Biology,China(2016ZX08002-001)the China Modern Agricultural Industry Technology System of MOF and MARA(CARS-03)the K.C.Wong Magna Funding in Ningbo University,China。
文摘The co-chaperone DnaJ plays an important role in protein folding and regulation of various physiological activities, and participates in several pathological processes. DnaJ has been extensively studied in many species including humans,drosophila, mushrooms, tomatoes, and Arabidopsis. However, few studies have examined the role of DnaJ in wheat(Triticum aestivum), and the interaction mechanism between TaDnaJs and plant viruses. Here, we identified 236 TaDnaJs and performed a comprehensive genome-wide analysis of conserved domains, gene structure and protein motifs, chromosomal positions and duplication relationships, and cis-acting elements. We grouped these Ta Dna Js according to their domains, and randomly selected six genes from the groups for tissue-specific analysis, and expression profiles analysis under hormone stress, and 17 genes for plant virus infection stress. In qRT-PCR, we found that among the 17 TaDnaJ genes tested, 16 genes were up-regulated after wheat yellow mosaic virus(WYMV) infection, indicating that the TaDnaJ family is involved in plant defense response. Subsequent yeast two-hybrid assays verified the WYMV NIa, NIb and 7 KD proteins interacted with TaDJC(TraesCS7 A02 G506000), which had the most significant changes in gene expression levels after WYMV infection.Insights into the molecular mechanisms of Ta Dna J-mediated stress tolerance and sensitivity could inform different strategies designed to improve crop resistance to abiotic and biotic stress. This study provides a basis for future investigation of the TaDnaJ family and plant defense mechanisms.
基金funding within the Wheat BigData Project(German Federal Ministry of Food and Agriculture,FKZ2818408B18)。
文摘Genome-wide association mapping studies(GWAS)based on Big Data are a potential approach to improve marker-assisted selection in plant breeding.The number of available phenotypic and genomic data sets in which medium-sized populations of several hundred individuals have been studied is rapidly increasing.Combining these data and using them in GWAS could increase both the power of QTL discovery and the accuracy of estimation of underlying genetic effects,but is hindered by data heterogeneity and lack of interoperability.In this study,we used genomic and phenotypic data sets,focusing on Central European winter wheat populations evaluated for heading date.We explored strategies for integrating these data and subsequently the resulting potential for GWAS.Establishing interoperability between data sets was greatly aided by some overlapping genotypes and a linear relationship between the different phenotyping protocols,resulting in high quality integrated phenotypic data.In this context,genomic prediction proved to be a suitable tool to study relevance of interactions between genotypes and experimental series,which was low in our case.Contrary to expectations,fewer associations between markers and traits were found in the larger combined data than in the individual experimental series.However,the predictive power based on the marker-trait associations of the integrated data set was higher across data sets.Therefore,the results show that the integration of medium-sized to Big Data is an approach to increase the power to detect QTL in GWAS.The results encourage further efforts to standardize and share data in the plant breeding community.
基金This work was supported by the National Key Research and Development Program of China(2022YFD1200201)Henan Provincial Science and Technology Research and Development Plan Joint Fund(222301420025)the Agricultural Science and Technology Innovation Program(ASTIP)of CAAS.
文摘Nitrogen(N)fertilizer application is essential for crop-plant growth and development.Identifying genetic loci associated with N-use efficiency(NUE)could increase wheat yields and reduce environmental pollution caused by overfertilization.We subjected a panel of 389 wheat accessions to N and chlorate(a nitrate analog)treatments to identify quantitative trait loci(QTL)controlling NUE-associated traits at the wheat seedling stage.Genotyping the panel with a 660K single-nucleotide polymorphism(SNP)array,we identified 397 SNPs associated with N-sensitivity index and chlorate inhibition rate.These SNPs were merged into 49 QTL,of which eight were multi-environment stable QTL and 27 were located near previously reported QTL.A set of 135 candidate genes near the 49 QTL included TaBOX(F-box family protein)and TaERF(ethylene-responsive transcription factor).A Tabox mutant was more sensitive to low-N stress than the wild-type plant.We developed two functional markers for Hap 1,the favorable allele of TaBOX.
基金funded by grants from the China Agriculture Research System of MOF and MARA(Grant No.CARS-25)Special Scientific Research Service Fee of the Chinese Academy of Agricultural Sciences(Grant No.Y2019XK16-03)+2 种基金the Agricultural Science and Technology Innovation Program(Grant No.CAASASTIP-2021-ZFRI)Screening and technical demonstration and popularization of fruit and melon varieties in Xinjiang(Grant No.Y2021XK14)Special funds for basic research and special basic research(Grant No.20131602),Financial technology funding of Changji national agricultural science and technology park(Grant No.2021EK246).
文摘To balance the relationship between high yield and low nitrogen supply,the nitrogen utilization efficiency of watermelon needs to be improved urgently.Nodule inception-like Protein(NLP)transcription factors play a key node role in nitrate response and growth and development of plant,however,comprehensive analysis of the NLP gene family in watermelon is unclear.This study explored the functional classification,evolutionary characteristics,and expression profile of the ClNLP gene family.Three ClNLPs were categorized into three groups according to their gene structure and phylogeny.All of them contained the conserved RWP-RK and PB1 domains.Evolutionary analysis of ClNLPs revealed that ClNLP1 and ClNLP3 underwent strong purified selection.In addition,cis-acting elements related to plant hormones and abiotic stresses were present in the ClNLP promoter.According to tissue-specific analysis ClNLP was widely expressed in roots,stems,leaves,flowers and fruits,and ClNLP1 was significantly induced in the roots of different nitrogen utilization varieties under different nitrate nitrogen supply.The SRTING functional protein association network suggested that ClNLP1 is associated with most genes,such as NRT1.1,NRT2.1,NIA1,and NIR1,and the dual-luciferase reporter assay found that ClNLP1 positively regulates the expression of ClNRT2.1.We speculated that ClNLP1 might play a central role in regulating the response of watermelon to nitrate nitrogen.
基金Supported by National Natural Science Foundation of China(31100460)Natural Science Foundation of Hainan Province(312026)Fundamental Research Fund for the Rubber Research Institute in Chinese Academy of Tropical Agricultural Sciences(1630022011014)
文摘The mevalonate diphosphate deearboxylase (MVD) is an essential enzyme in mevalonate (MVA) pathway that catalyzes the irreversible Mg2+ -ATP de- pendent decarboxylation of 6-carben compound mevalonate-5-diphosphate (MVAPP) into 5-carbon isopentenyl diphosphate ( IPP), the building block of sterol and isoprenoid biosynthesis. In this study, based on the published geanme sequences and ESTs, a genome-wide search was carried out for the first time to identify MVD gene family in four genome-sequenced Euphorbiaceae plants, i.e. castor bean ( Ricinus communis), physic nut ( Jatropha curcas), cassava (Manihot esculenta) and rubber tree (Hevea brasiliensis), and to analyze the gene structure and phylogenetic characteristics. According to the experimental results, 1, 1,2 and 2 MVD genes, which all contain 9 introns, were identh'ied from castor bean, physic nut, cassava and rubber tree, respectively. Homology analysis indicates that MVD genes are widely distributed in eukaryotes, some archaea and eubacteria, which suggests an early origin of this gerte family. Although MVD genes were identified in most green plants, no homologous genes were found in unicellular green algae. In most genome-sequenced plants including castor bean and physic nut, a single copy of MVD gene was found; however, in cassava and rubber tree, two copies were identified just like that in moss, maize, Arabidopsis and poplar. "In castor bean, digital expression profiling suggests that in five examined tissues, i.e. leaf, flower, II/III stage endosperm, V/VI stage endosperm and seed, RcPMK was expressed strongly in flower and II/III stage endosperm, moderately in V/VI stage endosperm and leaf, and weakly in seed.
基金supported by the National Natural Science Foundation of China (31971936)the Science &Technology Projects of Shandong Province, China (2019YQ028, 2020CXGC010805, 2019B08, 2019YQ014 and ZR2020MC093)
文摘Wheat grain yield is generally sink-limited during grain filling.The grain-filling rate(GFR)plays a vital role but is poorly studied due to the difficulty of phenotype surveys.This study explored the grain-filling traits in a recombinant inbred population and wheat collection using two highly saturated genetic maps for linkage analysis and genome-wide association study(GWAS).Seventeen stable additive quantitative trait loci(QTLs)were identified on chromosomes 1B,4B,and 5A.The linkage interval between IWB19555 and IWB56078 showed pleiotropic effects on GFR_(1),GFR_(max),kernel length(KL),kernel width(KW),kernel thickness(KT),and thousand kernel weight(TKW),with the phenotypic variation explained(PVE)ranging from 13.38%(KW)to 33.69%(TKW).198 significant marker-trait associations(MTAs)were distributed across most chromosomes except for 3D and 4D.The major associated sites for GFR included IWB44469(11.27%),IWB8156(12.56%)and IWB24812(14.46%).Linkage analysis suggested that IWB35850,identified through GWAS,was located in approximately the same region as QGFR_(max)2B.3-11,where two high-confidence candidate genes were present.Two important grain weight(GW)-related QTLs colocalized with grain-filling QTLs.The findings contribute to understanding the genetic architecture of the GFR and provide a basic approach to predict candidate genes for grain yield trait QTLs.
基金Supported by the Special Fund for the Industrial Technology System Construction of Modern Agriculture in Wheat(CARS-E-2-36)the Special Fund for Henan Industrial Technology System Construction of Modern Agriculture in Wheat(S2010-10-02)National Support Program for Science and Technology(2011BAD35B03)~~
文摘[Objective] This study aimed to establish an identification system for drought-resistance in wheat by using near-infrared diffuse reflectance spectroscopy. [Method] In 2006-2007, 36 wheat varieties with different drought resistance were selected and were classified according to their drought resistance grades determined by the Technical Specification of Identification and Evaluation for Drought Resistance in Wheat (GB/T 21127-2007). In addition, the harvested wheat seed samples were spectrally analyzed with FOSS NIRSystems5000 near-infrared spectrum analyzer for grain quality (full spectrum analyzer) and then the forecasted regression equations were established. [Result] After the establishment of a database and validation, dis- criminated functions were obtained. The determination coefficient (RSQ) and coeffi- cients of determination for cross validation (1-VR) in the discriminant function built with seed samples from water stress area were 0.846 0 and 0.781 8, respectively, which indicated that the consistency between drought resistance and spectral charac- teristics in wheat varieties was good, and there was high correlation between the near-infrared diffuse reflectance spectra of seeds and the drought resistance in wheat. [Conclusiou] Under water stress condition, it is feasible to establish a conve- nient, rapid and no-damage identification system for the drought resistance in wheat by using the near-infrared diffuse reflectance spectrum technique to scan wheat seeds.
基金supported by the grants from the Natural Science Foundation of Xinjiang University (070378)
文摘[Objective] The aim of this study was to isolate and identify lactic acid bacteria (LAB) from wheat haulm and to select efficient strains for silage fermentation. [ Method] From 78 LAB strains isolated on the MRS solid medium containing calcium carbonate, we selected 43 strains having better acid-production ability through morphological observation, Gram staining, physiological and biochemical tests, acid production test, acid tolerance test and salt tolerance test. These strains were finally identified by sequencing 16 S rDNA. [ Result] Of the 43 LAB strains having better acid-production ability, 37 belonged to Lactobacillus paracasei subsp., one belonged to Lactobacillus rhamnosus and five belonged to Enterococcus faecium, as shown by the sequences of 16 S rDNA. [ Conclusion ] A total of 43 LAB strains having better acid-production ability were selected, which may be developed as high-quality silage additives.
基金National Key Research and Development Program of China(2017YFD0101003)Science and Technology Program of Xinjiang Production and Construction Corps(2016AC027,2019AB021).
文摘Wheat powdery mildew and stripe rust are the major diseases in wheat producing area in Xinjiang.To obtain wheat germplasm resources and varieties resistant to powdery mildew and rust,36 high-generation stable strains of Xinjiang winter wheat were evaluated using the method of natural inducement from 2018 to 2020.A total of 5 strains with high resistance to powdery mildew,4 strains with slow stripe rust and 1 strain with resistance to powdery mildew and adult plant slow stripe rust were obtained.And the parental combination of disease-resistant varieties was analyzed.These studies will provide theoretical basis for the breeding of resistant wheat varieties in Xinjiang.
基金financially supported by the Special Fund for Agro-scientific Research in the Public Interest,China(201503114 and 200903040)the National Key Basic Research Program of China(973 Program,2013CB127502)
文摘Plant-parasitic nematodes are very common on cereal crops and cause economic losses via reduction in grain quality and quantity. During 2014, 83 soil samples were collected from wheat and barley fields in 21 districts of 13 provinces across five regions (CentralAnatolia, Marmara, Aegean, SoutheastAnatolia, and Black Sea Region) of Turkey. Cyst-forming nematodes were found in 66 samples (80%), and the internal transcribed spacer (ITS) sequencing and species-specific PCR identified the species in 64 samples as Heterodera filipjevi, Heterodera latipons, and Heterodera avenae. The predominant patho- genic cereal cyst nematode was H. filipjevi, which was found in all five regions surveyed. H. avenae was only detected in Southeast Anatolia whereas H. latipons was detected in Southeast Anatolia and Central Anatolia. ITS-rDNA phylogenetic analyses showed that H. avenae isolates from China clustered with H. australis, and Turkish isolates were closely related to European and USA isolates of this species. H. filipjevi from Turkey and China were clustered closely with those from the UK, Germany, Russia, and the USA. The density of many of these populations exceeded 6r approached the maximum threshold level for economic loss. To our knowledge, this is the first report of H. filipjevi in Diyarbakir, Edirne, and Kutahya provinces, and the first report of H. avenae in DiyarbakJr Province. These results exhibit the most rigorous analysis to date on the occurrence and distribution of Heterodera spp. in Turkey's major wheat-producing areas, thus providing a basis for more specific resistance breeding, as well as other management practices.
基金supported by the Science and Technology Project of Suzhou(SNG2017083)the Science and Technology Project of Changshu(CN201701).
文摘Melon(Cucumis melo),belonging to the Cucurbitaceae family,is a globally important economic crop.GRAS(GAI,RGA,SCR)genes,which are a type of transcription factor,play a critical role in plant growth and development,including processes such as radial root patterning,light signalling,abiotic/biotic stress,axillary shoot meristem formation,and phytohormone(gibberellin)signal transduction.In this study,the GRAS family in melon was analysed comprehensively with respect to chromosomal location,motif prediction,gene structure,and expression pattern.A total of 37 GRAS genes were first identified in melon,after which a phylogenetic tree was built with the GRAS genes of three model species(Arabidopsis,rice,and sacred lotus)and were divided into nine groups based on the findings of previous studies.Motif and gene structure analysis showed typical conserved domains in all melon GRAS and similar structures in the same subfamilies.The expression analysis of GRAS genes done using RNA-seq data,showed that these genes were differentially expressed in different melon leaves under powdery mildew stress.Furthermore,the real-time quantitative PCR for GRAS genes revealed gene expression corresponding to powdery mildew stress.Our results provide useful information for a better understanding of GRAS genes and provide the foundation for additional functional exploration of the melon GRAS gene family in the powdery mildew stress response.
基金supported partially by the National Key Project for the Research and Development of China(2017YFE0126700)Jiangsu Agricultural Science and Technology Innovation Fund(CX(21)3109)Jiangsu seed Industry Revitalization Project(JBGS(2021)052).
文摘Thaumatin-like proteins (TLPs) play potential roles in plant resistance to various diseases. Identifying TLPs is neces-sary to determine their function and apply them to plant disease resistance. However, limited information is available about TLP-family genes in wheat, especially regarding their responses to Fusarium species, which cause Fusarium head blight in wheat. In this study, we conducted a comprehensive genome-wide survey of TLP genes in wheat and identified 129 TLP genes in the wheat genome, which were unevenly distributed on 21 wheat chromosomes, with 5A containing the highest number. Phylogenetic analysis showed that these 129 wheat TLP genes together with 24 Arabidopsis TLPs were classified into 7 groups based on the protein sequences. We systematically analyzed the genes in terms of their sequence characterization, chromosomal locations, exon-intron distribution, duplication (tandem and segmental) events and expression profiles in response to Fusarium infection. Furthermore, we analyzed differen-tially expressed TLP genes based on publicly available RNA-seq data obtained from a resistant near isogenic wheat line at different time points after Fusarium graminearum inoculation. Then, the expression of 9 differentially expressed TLP genes was confirmed by real-time PCR, and these 9 genes were all upregulated in the resistant Sumai 3 variety, which was generally consistent with the RNA-seq data. Our results provide a basis for selecting candidate wheat TLP genes for further studies to determine the biological functions of the TLP genes in wheat.
基金Supported by Doctor Scientific Research Fund from Zaozhuang University~~
文摘[Objective] The aim of this study is to investigate the chromosome pairing of F1 from Aegilops Ventricosa-Aegilops Cylindrica amphiploid × common wheat.[Method] Microsporogenesis and pollen development of Yannong15,SDAU18 and their hybrid F1 were observed cytologically by squash method.[Result] The results showed that microsporogenesis and pollen development of two parents including Yannong15 and SDAU18 were basically normal,and their seed setting was also basically normal.However,the microsporogenesis of their hybrid F1 was chaotic.Univalent and bivalent with high frequency of 10.11 and 18.29 per cell respectively occurred in meiotic MI(metphaseI) of PMC(pollen mother cell).Nevertheless,only quite low frequency of multivalents occurred in meiotic PMC MI.The laggards at meiotic AI(anaphaseI) were 5 per cell on average.The number of micronucleoli in tetrad was 4.43 per cell averagely.The aborted pollen with different frequency occurred at every stage of hybrid F1 pollen development but mainly after single nucleus pollen stage.The fertile pollen rate of hybrid F1 was only 31% at 3-nucleated stage.[Conclusion] This study provides cytogenetics basis for further analysis and utilization of the amphiploid.
基金Supported by the Exploration and Innovation and Utilization of Wheat Germplasm Resource(2013BAD01B02-6)the National Natural Science Foundation of China(30900897)the Cyrus Tang Foundation of America~~
文摘In order to clarify the relationships between seedling and adult-plant resis- tance to English grain aphid Sitobion avenae (Fabricius), 94 wheat cultivars were screened and evaluated based on aphid number ratio through artificial inoculation in greenhouse and natural infection in field from 2010 to 2012. The results indicated that 43 wheat cultivars were resistant to aphid at different levels, of which two dis- played high resistance, eight moderate resistance and 33 low resistance at adult- plant stage. Meanwhile, 45 wheat cultivars exhibited aphid resistance at seedling stage, including 5 highly-resistant cultivars, 16 moderately-resistant cultivars and 24 low-resistant cultivars. Thirty wheat cultivars showed resistance to aphids to different degrees at both seedling and adult-plant stages, accounting for 31.91% of all tested wheat cultivars, especially that C273 and Lanmai (Shaanxi Zhashui) showed high aphid resistance. Aphid number ratio of wheat cultivars at seedling stage had an extremely significant positive correlation with that at adult-plant stage. Additionally, 66 wheat cultivars exhibited the same resistance to aphids at both seedling and adult-plant stages, accounting for 70.21% of all cultivars. The study demonstrated that inoculation test at seedling stage in greenhouse is a reliable method for identi- fying wheat resistance to S. avenae.
基金supported by the National Natural Science Foundation of China (31401843)the Modern Agro-industry Technology Research System (CARS-32)+2 种基金the National Nonprofit Institute Research Grant of CATAS-ITBB (1630052016006)the National Program on Key Basic Research Project of China (2014CB160314)the Natural Science Foundation of Hainan Province (314100)
文摘β-amylase(BAM) is an important enzyme involved in conversion of starch to maltose in multiple biological processes in plants. However, there is currently insufficient information on the BAM gene family in the important fruit crop banana. This study identified 16 BAM genes in the banana genome. Phylogenetic analysis showed that Ma BAMs were classified into four subfamilies. Most Ma BAMs in each subfamily shared similar gene structures. Conserved motif analysis showed that all identified Ma BAM proteins had the typical glyco hydro14 domains. Comprehensive transcriptomic analysis of two banana genotypes revealed the expression patterns of Ma BAMs in different tissues, at various stages of fruit development and ripening, and in responses to abiotic stresses. Most Ma BAMs showed strong transcript accumulation changes during fruit development and late-stage ripening. Some Ma BAMs showed significant changes under cold, salt, and osmotic stresses. This finding indicated that Ma BAMs might be involved in regulating fruit development, ripening, and responses to abiotic stress. Analysis of five hormone-related and seven stressrelevant elements in the promoters of Ma BAMs further revealed that BAMs participated in various biological processes. This systemic analysis provides new insights into the transcriptional characteristics of the BAM genes in banana and may serve as a basis for further functional studies of such genes.
基金supported by the Natural Science Foundation of Hebei Province,China (C2006000720)the Hebei Excellent Expert Training Oversea Project,China
文摘Eighty-one wheat accessions including 50 southern regional performance nursery (SRPN) lines and 31 northern regional performance nursery (NRPN) lines from the United States were tested to evaluate the growth habit by chilling treatments and to estimate the VRN allele variation with 19 pairs of published VRN primers. Two spring wheat accessions and 44 semi-spring wheat accessions were confirmed based on their chilling days' requirement and polymorphism was found at VRN loci. The Vrn-A1 allele had the highest frequency in the RPN accessions and VA1-CAPs markers identified growth habit of RPN lines. No polymorphism was found at the VRN3 loci and some polymorphism at the region of promoter and the first intron of VRN1 was not always consistent to growth habit in the wheat RPN accessions. The existence of variation in VRN alleles suggested that singly using the dominant Vrn allele is possible to extend the diversity of wheat accessions and improve their adaption to different environments in autumn-sowing region. This information will be useful for the cultivars exploitation and wheat breeding program.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(3-15)
文摘[ Objective ] The paper was to determine the resistance level of the tried and pre-examination wheat cultivars against powdery mildew in Anhui Province of China. [ Method ] By using artificial inoculation and identification method in fields, the resistance of wheat cultivars was identified in consecutive three years from 2010 to 2012. [ Result] The highly susceptible (HS) cultivar accounted for 30%, 42% and 11% of total tested cultivars in the years of 2010, 2011 and 2012, respectively; moderately susceptible (MS) cultivar accounted for 53% of total tested cuhivars in 2010, which accounted for 47% and 57% in 2011 and 2012, respectively; moderately resistant (MR) cuhivar accounted for 17% of total tested cultivars in 2010, which accounted for 11% and 32% in 2011 and 2012, respectively. [ Conclusion] The paper can guide breeding direction, and also provide scientific basis for variety approval.