期刊文献+
共找到221篇文章
< 1 2 12 >
每页显示 20 50 100
Development of an Agrobacterium-mediated CRISPR/Cas9 gene editing system in jute(Corchorus capsularis)
1
作者 Shaolian Jiang Qin Li +9 位作者 Xiangxue Meng Mengxin Huang Jiayu Yao Chuanyu Wang Pingping Fang Aifen Tao Jiantang Xu Jianmin Qi Shuangxia Jin Liwu Zhang 《The Crop Journal》 SCIE CSCD 2024年第4期1266-1270,共5页
Jute(Corchorus capsularis L.)is the second most important natural plant fiber source after cotton.However,developing an efficient gene editing system for jute remains a challenge.In this study,the transgenic hairy roo... Jute(Corchorus capsularis L.)is the second most important natural plant fiber source after cotton.However,developing an efficient gene editing system for jute remains a challenge.In this study,the transgenic hairy root system mediated by Agrobacterium rhizogenes strain K599 was developed for Meifeng 4,an elite jute variety widely cultivated in China.The transgenic hairy root system for jute was verified by subcellular localization and bimolecular fluorescence complementation(BiFC)assays.The CHLOROPLASTOS ALTERADOS 1(CcCLA1)gene,which is involved in the development of chloroplasts,was targeted for editing at two sites in Meifeng 4.Based on this hairy root transformation,the gRNA scaffold was placed under the control of cotton ubiquitin GhU6.7 and-GhU6.9 promoters,respectively,to assess the efficiency of gene editing.Results indicated the 50.0%(GhU6.7)and 38.5%(GhU6.9)editing events in the target 2 alleles(gRNA2),but no mutation was detected in the target 1 allele(gRNA1)in transgenic-positive hairy roots.CcCLA1 gene editing at gRNA2 under the control of GhU6.7 in Meifeng 4 was also carried out by Agrobacterium tumefaciens-mediated transformation.Two CcCLA1 mutants were albinic,with a gene editing efficiency of 5.3%.These findings confirm that the CRISPR/Cas9 system,incorporating promoter GhU6.7,can be used as a gene editing tool for jute. 展开更多
关键词 JUTE Agrobacterium-mediated transformation Genome editing Hairy root system
下载PDF
A simple and efficient CRISPR/Cas9 system permits ultra-multiplex genome editing in plants
2
作者 Suting Wu Htin Kyaw +11 位作者 Zhijun Tong Yirong Yang Zhiwei Wang Liying Zhang Lihua Deng Zhiguo Zhang Bingguang Xiao William Paul Quick Tiegang Lu Guoying Xiao Guannan Qin Xue'an Cui 《The Crop Journal》 SCIE CSCD 2024年第2期569-582,共14页
The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of t... The development and maturation of the CRISPR/Cas genome editing system provides a valuable tool for plant functional genomics and genetic improvement.Currently available genome-editing tools have a limited number of targets,restricting their application in genetic research.In this study,we developed a novel CRISPR/Cas9 plant ultra-multiplex genome editing system consisting of two template vectors,eight donor vectors,four destination vectors,and one primer-design software package.By combining the advantages of Golden Gate cloning to assemble multiple repetitive fragments and Gateway recombination to assemble large fragments and by changing the structure of the amplicons used to assemble sg RNA expression cassettes,the plant ultra-multiplex genome editing system can assemble a single binary vector targeting more than 40 genomic loci.A rice knockout vector containing 49 sg RNA expression cassettes was assembled and a high co-editing efficiency was observed.This plant ultra-multiplex genome editing system advances synthetic biology and plant genetic engineering. 展开更多
关键词 CRISPR/Cas9 Multiplex genome editing Assembly system PLANT
下载PDF
Metabolic engineering and genome editing strategies for enhanced lipid production in microalgae
3
作者 ANJANI DEVI CHINTAGUNTA SAMUDRALA PRASHANT JEEVAN KUMAR NUNE SATYA SAMPATH KUMAR 《BIOCELL》 SCIE 2024年第8期1181-1195,共15页
Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enh... Depleting global petroleum reserves and skyrocketing prices coupled with succinct supply have been a grave concern,which needs alternative sources to conventional fuels.Oleaginous microalgae have been explored for enhanced lipid production,leading towards biodiesel production.These microalgae have short life cycles,require less labor,and space,and are easy to scale up.Triacylglycerol,the primary source of lipids needed to produce biodiesel,is accumulated by most microalgae.The article focuses on different types of oleaginous microalgae,which can be used as a feedstock to produce biodiesel.Lipid biosynthesis in microalgae occurs through fatty acid synthesis and TAG synthesis approaches.In-depth discussions are held regarding other efficient methods for enhancing fatty acid and TAG synthesis,regulating TAG biosynthesis bypass methods,blocking competing pathways,multigene approach,and genome editing.The most potential targets for gene transformation are hypothesized to be a malic enzyme and diacylglycerol acyltransferase while lowering phosphoenolpyruvate carboxylase activity is reported to be advantageous for lipid synthesis. 展开更多
关键词 Oleaginous microalgae BIODIESEL TAG synthesis Metabolic engineering Genome editing
下载PDF
A new gain-of-function OsGS2/GRF4 allele generated by CRISPR/Cas9 genome editing increases rice grain size and yield 被引量:7
4
作者 Wenshu Wang Weipeng Wang +11 位作者 Yanlin Pan Chao Tan Hongjing Li Ya Chen Xingdan Liu Jing Wei Nian Xu Yu Han Han Gu Rongjian Ye Qi Ding Chonglie Ma 《The Crop Journal》 SCIE CSCD 2022年第4期1207-1212,共6页
Grain size is one of the most important factors affecting rice grain quality and yield,and attracts great attention from molecular biologists and breeders.In this study,we engineered a CRISPR/Cas9 system targeting the... Grain size is one of the most important factors affecting rice grain quality and yield,and attracts great attention from molecular biologists and breeders.In this study,we engineered a CRISPR/Cas9 system targeting the miR396 recognition site of the rice GS2 gene,which encodes growth-regulating factor 4(OsGRF4)and regulates multiple agronomic traits including grain size,grain quality,nitrogen use efficiency,abiotic stress response,and seed shattering.In contrast to most previous genome editing efforts in which indel mutations were chosen to obtain null mutants,a mutant named GS2^(E) carrying an in-frame 6-bp deletion and 1-bp substitution within the miR396-targeted sequence was identified.GS2^(E) plants showed increased expression of GS2 in consistent with impaired repression by miR396.As expected,the gain-of-function GS2^(E) mutant exhibited multiple beneficial traits including increased grain size and yield and bigger grain length/width ratio.Thousand grain weight and grain yield per plant of GS2^(E) plants were increased by 23.5%and 10.4%,respectively.These improved traits were passed to hybrids in a semidominant way,suggesting that the new GS2^(E) allele has great potential in rice improvement.Taken together,we report new GS2 germplasm and describe a novel gene-editing strategy that can be widely employed to improve grain size and yield in rice.This trait-improvement strategy could be applied to other genes containing miRNA target sites,in particular the conserved miR396-GRF/GIF module that governs plant growth,development and environmental response. 展开更多
关键词 Genome editing GS2/GRF4 Grain size YIELD RICE
下载PDF
Systematic identification of endogenous RNA polymeraseⅢpromoters for efficient RNA guidebased genome editing technologies in maize 被引量:8
5
作者 Xiantao Qi Le Dong +5 位作者 Changlin Liu Long Mao Fang Liu Xin Zhang Beijiu Cheng Chuanxiao Xie 《The Crop Journal》 SCIE CAS CSCD 2018年第3期314-320,共7页
Single-guide RNA(sg RNA) is one of the two core components of the CRISPR(clustered regularly interspaced short palindromic repeat)/Cas(CRISPR-associated) genome-editing technology. We established an in vitro Traffic L... Single-guide RNA(sg RNA) is one of the two core components of the CRISPR(clustered regularly interspaced short palindromic repeat)/Cas(CRISPR-associated) genome-editing technology. We established an in vitro Traffic Light Reporter(TLR) system, which is designated as the same colors as traffic lights such as green, red and yellow were produced in cells. The TLR can be readily used in maize mesophyll protoplast for a quick test of promoter activity. The TLR assay indicates the variation in transcription activities of the seven Pol III promoters, from 3.4%(U6-1) to over 21.0%(U6-6). The U6-2 promoter, which was constructed to drive sg RNA expression targeting the Zm Wx1 gene, yielded mutation efficiencies ranging from 48.5% to 97.1%. Based on the reported and unpublished data, the in vitro TLR assay results were confirmed to be a readily system and may be extended to other plant species amenable to efficient genome editing via CRISPR/Cas. Our efforts provide an efficient method of identifying native Pol III-recognized promoters for RNA guide-based genome-editing systems in maize. 展开更多
关键词 CRISPR/Cas Genome editing RNA polymerase III promoters MAIZE
下载PDF
Genome Editing as A Versatile Tool to Improve Horticultural Crop Qualities 被引量:10
6
作者 Yating Chen Wenwen Mao +3 位作者 Ting Liu Qianqian Feng Li Li Bingbing Li 《Horticultural Plant Journal》 SCIE 2020年第6期372-384,共13页
The quality traits of horticultural crops,including the accumulation of nutrients and flavor substances,morphology,and texture,affect the palatability and nutritional value.For many years,efforts have been made to imp... The quality traits of horticultural crops,including the accumulation of nutrients and flavor substances,morphology,and texture,affect the palatability and nutritional value.For many years,efforts have been made to improve the quality of horticultural crops.The recent establishment of gene editing technology,with its potential applications in horticultural crops,provides a strategy for achieving this goal in a rapid and efficient manner.Here,we summarize research efforts aimed at improving horticultural crop quality through genome editing.We describe specific genome editing systems that have been used and traits that have been targeted in these efforts.Additionally,we discuss limiting factors and future perspectives of genome editing technology in improving horticultural crop qualities in both research and plant breeding.In summary,genome editing technology is emerging as a powerful tool for efficiently and rapidly improving horticultural crop quality,and we believe that the cautious application of genome editing in horticultural crops will generate new germplasms with improved quality in the near future. 展开更多
关键词 Genome editing CRISPR/Cas9 Horticultural crop Quality improvement
下载PDF
In vivo genome editing thrives with diversified CRISPR technologies 被引量:5
7
作者 Xun Ma Avery Sum-Yu Wong +3 位作者 Hei-Yin Tam Samuel Yung-Kin Tsui Dittman Lai-Shun Chung Bo Feng 《Zoological Research》 SCIE CAS CSCD 2018年第2期58-71,共14页
Prokaryotic type II adaptive immune systems have been developed into the versatile CRISPR technology, which has been widely applied in site- specific genome editing and has revolutionized biomedical research due to it... Prokaryotic type II adaptive immune systems have been developed into the versatile CRISPR technology, which has been widely applied in site- specific genome editing and has revolutionized biomedical research due to its superior efficiency and flexibility. Recent studies have greatly diversified CRISPR technologies by coupling it with various DNA repair mechanisms and targeting strategies. These new advances have significantly expanded the generation of genetically modified animal models, either by including species in which targeted genetic modification could not be achieved previously, or through introducing complex genetic modifications that take multiple steps and cost years to achieve using traditional methods. Herein, we review the recent developments and applications of CRISPR-based technology in generating various animal models, and discuss the everlasting impact of this new progress on biomedical research. 展开更多
关键词 CRISPR/Cas9 Genome editing Animal models
下载PDF
An efficient transient gene expression system for protein subcellular localization assay and genome editing in citrus protoplasts 被引量:2
8
作者 Wenhui Yang Jiaqin Ren +6 位作者 Wanrong Liu Dan Liu Kaidong Xie Fei Zhang Pengwei Wang Wenwu Guo Xiaomeng Wu 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第3期425-436,共12页
Protoplast has been widely used in biotechnologies to circumvent the breeding obstacles in citrus, including long juvenility, polyembryony, and male/female sterility. The protoplast-based transient gene expression sys... Protoplast has been widely used in biotechnologies to circumvent the breeding obstacles in citrus, including long juvenility, polyembryony, and male/female sterility. The protoplast-based transient gene expression system is a powerful tool for gene functional characterization and CRISPR/Cas9 genome editing in higher plants, but it has not been widely used in citrus. In this study, the polyethylene glycol(PEG)-mediated method was optimized for citrus callus protoplast transfection, with an improved transfection efficiency of 68.4%. Consequently, the efficiency of protein subcellular localization assay was increased to 65.8%, through transient expression of the target gene in protoplasts that stably express the fluorescent organelle marker protein. The gene editing frequencies in citrus callus protoplasts reached 14.2% after transient expression of CRISPR/Cas9 constructs. We demonstrated that the intronic polycistronic tRNAgRNA(inPTG) genome editing construct was functional in both the protoplast transient expression system and epicotyl stable transformation system in citrus. With this optimized protoplast transient expression system, we improved the efficiency of protein subcellular localization assay and developed the genome editing system in callus protoplasts, which provides an approach for prompt test of CRISPR vectors. 展开更多
关键词 CITRUS Callus protoplast Transient transfection Subcellular localization Genome editing
下载PDF
Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research 被引量:1
9
作者 Zhen-Hua Li Jun Wang +2 位作者 Jing-Ping Xu Jian Wang Xiao Yang 《Military Medical Research》 SCIE CAS CSCD 2023年第6期862-880,共19页
The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-bas... The rapid development of genome editing technology has brought major breakthroughs in the fields of life science and medicine. In recent years, the clustered regularly interspaced short palindromic repeats(CRISPR)-based genome editing toolbox has been greatly expanded, not only with emerging CRISPR-associated protein(Cas) nucleases, but also novel applications through combination with diverse effectors. Recently, transposon-associated programmable RNA-guided genome editing systems have been uncovered, adding myriads of potential new tools to the genome editing toolbox. CRISPR-based genome editing technology has also revolutionized cardiovascular research. Here we first summarize the advances involving newly identified Cas orthologs, engineered variants and novel genome editing systems, and then discuss the applications of the CRISPR-Cas systems in precise genome editing, such as base editing and prime editing. We also highlight recent progress in cardiovascular research using CRISPR-based genome editing technologies, including the generation of genetically modified in vitro and animal models of cardiovascular diseases(CVD) as well as the applications in treating different types of CVD. Finally, the current limitations and future prospects of genome editing technologies are discussed. 展开更多
关键词 Genome editing CRISPR-Cas system Base editing Prime editing Transposon-associated genome editing Cardiovascular disease Heart Blood vessel Gene therapy
下载PDF
Genome editing technology and application in soybean improvement 被引量:7
10
作者 Aili Bao Chanjuan Zhang +3 位作者 Yi Huang Haifeng Chen Xinan Zhou Dong Cao 《Oil Crop Science》 2020年第1期31-40,共10页
Soybean(Glycine max)is a legume crop with great economic value that provides rich protein and oil for human food and animal feed.In order to cope with the ever-increasing need for soybean products and the changing env... Soybean(Glycine max)is a legume crop with great economic value that provides rich protein and oil for human food and animal feed.In order to cope with the ever-increasing need for soybean products and the changing environment,soybean genetic improvement needs to be accelerated.In recent years,the rapid developed genome editing technologies,such as zinc finger nuclease(ZFNs),transcription activator-like effector nucleases(TALENs),and clustered regularly interspaced short palindromic repeats/CRISPR associated protein(CRISPR/Cas),have shown broad application prospects in gene function research and improvement of important agronomic traits in many crops,and has also brought opportunities for soybean breeding.Here we systematically reviewed recent advances in genome editing technology.We also summarized the significances,current applications,challenges and future perspectives in soybean genome editing,which could provide references for exerting the feature and advantage of this technology to better soybean improvement. 展开更多
关键词 Genome editing SOYBEAN ZFNs TALENs CRISPR/Cas9 CRISPR/Cas12a Base editing
下载PDF
CRISPR-based genome editing technology and its applications in oil crops 被引量:2
11
作者 Jianjie He Kai Zhang +4 位作者 Mi Tang Weixian Zhou Liurong Chen Zhaobo Chen Maoteng Li 《Oil Crop Science》 CSCD 2021年第3期105-113,共9页
Oil crops,mainly comprised of soybean,rapeseed,groundnut,sunflower and etc.,have provided substantial edible oil and other tremendous nutrients for human beings,as well as valuable biofuels for associated industries.T... Oil crops,mainly comprised of soybean,rapeseed,groundnut,sunflower and etc.,have provided substantial edible oil and other tremendous nutrients for human beings,as well as valuable biofuels for associated industries.The genetic improvement of significant oil crops and/or domesticating novel high-yielding oil crops are in urgent need to cope with the ever-increasing demand for various oil crop products.CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)-based genome editing technology,born a few years ago,edits stretches of DNA in a targeted and RNA-dependent fashion.The Characteristics of targeted mutagenesis and easy manipulation owned by the technology make it have been applied to many plants and exhibited great potential in the genetic improvement of many important oil crops.In the face of growing need for oil crop products and the rapid developments in CRISPR-based genome editing technology,a critical review regarding the technology and its application in oil crops is badly required to provide references for the better use of this technology to modify the oil crops for higher yield.In this review paper,we briefly described the CRISPR-based genome editing technology and summarized its applications and future prospects in oil crops. 展开更多
关键词 CRISPR-based genome editing CRISPR/Cas9 CRISPR/Cpf1 Base editing Prime editing Oil crops
下载PDF
Multiplex gene editing reduces oxalate production in primary hyperoxaluria type 1 被引量:1
12
作者 Rui Zheng De-Xin Zhang +5 位作者 Yan-Jiao Shao Xiao-Liang Fang Lei Yang Ya-Nan Huo Da-Li Li Hong-Quan Geng 《Zoological Research》 SCIE CSCD 2023年第6期993-1002,共10页
Targeting key enzymes that generate oxalate precursors or substrates is an alternative strategy to eliminate primary hyperoxaluria type I(PH1),the most common and lifethreatening type of primary hyperoxaluria.The comp... Targeting key enzymes that generate oxalate precursors or substrates is an alternative strategy to eliminate primary hyperoxaluria type I(PH1),the most common and lifethreatening type of primary hyperoxaluria.The compact Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)from the Prevotella and Francisella 1(Cpf1)protein simplifies multiplex gene editing and allows for all-in-one adeno-associated virus(AAV)delivery.We hypothesized that the multiplex capabilities of the Cpf1system could help minimize oxalate formation in PH1 by simultaneously targeting the hepatic hydroxyacid oxidase 1(Hao1)and lactate dehydrogenase A(Ldha)genes.Study cohorts included treated PH1 rats(Agxt Q84X rats injected with AAV-AsCpf1 at 7 days of age),phosphate-buffered saline(PBS)-injected PH1 rats,untreated PH1 rats,and age-matched wild-type(WT)rats.The most efficient and specific CRISPR RNA(crRNA)pairs targeting the rat Hao1and Ldha genes were initially screened ex vivo.In vivo experiments demonstrated efficient genome editing of the Hao1 and Ldha genes,primarily resulting in small deletions.This resulted in decreased transcription and translational expression of Hao1 and Ldha.Treatment significantly reduced urine oxalate levels,reduced kidney damage,and alleviated nephrocalcinosis in rats with PH1.No liver toxicity,ex-liver genome editing,or obvious offtarget effects were detected.We demonstrated the AAVAsCpf1 system can target multiple genes and rescue the pathogenic phenotype in PH1,serving as a proof-ofconcept for the development of multiplex genome editingbased gene therapy. 展开更多
关键词 HYPEROXALURIA Genome editing Lactate dehydrogenase Hydroxyacid oxidase 1
下载PDF
Progress in Gene Editing Technique and Its Prospect in Rice Quality Research
13
作者 谢红军 朱明东 +2 位作者 汤国华 凌春强 余应弘 《Agricultural Science & Technology》 CAS 2017年第12期2246-2253,2275,共9页
In this review, we briefly survey the historical development of gene editing techniques, such as ZFNs, TALENs, MGNs and CRISPR/Cas; summarize its appli- cation and development in rice genome editing, research achievem... In this review, we briefly survey the historical development of gene editing techniques, such as ZFNs, TALENs, MGNs and CRISPR/Cas; summarize its appli- cation and development in rice genome editing, research achievements of rice quali- ty traits. At end, the prospect of gene editing technology and its application in rice quality traits improvement are also discussed. 展开更多
关键词 Genome editing Rice (O. satlva) Quality traits ZPNs I ALt-NS CRISPR/Cas
下载PDF
Multiplex genome editing targeting soybean with ultra-low anti-nutritive oligosaccharides
14
作者 Wenxin Lin Huaqin Kuang +6 位作者 Mengyan Bai Xiaomeng Jiang Pengfei Zhou Yinghua Li Bo Chen Huarong Li Yuefeng Guan 《The Crop Journal》 SCIE CSCD 2023年第3期825-831,共7页
Soybean is the primary source of plant protein for humans.Owing to the indigestibility of the raffinose family of oligosaccharides(RFO),raffinose and stachyose are considered anti-nutritive factors in soybean seeds.Lo... Soybean is the primary source of plant protein for humans.Owing to the indigestibility of the raffinose family of oligosaccharides(RFO),raffinose and stachyose are considered anti-nutritive factors in soybean seeds.Low-RFO soybean cultivars are generated by mutagenesis of RFO biosynthesis genes,but the carbohydrate profiles invite further modification to lower RFOs.This study employed a pooled multiplex genome editing approach to target four seed-specifically expressed genes mediating RFO biosynthesis,encoding three raffinose synthases(RS2,RS3,and RS4)and one stachyose synthase.In T1progeny,rs2/rs3 and rs4/sts homozygous double mutants and a rs2/rs3/rs4/sts quadruple mutant(rfo-4m)were characterized.The rs2/rs3 mutant showed reduced raffinose and stachyose contents,but the rs4/sts mutant showed only reduced stachyose in seeds.The RFO contents in the rfo-4m mutant were almost eliminated.Metabolomic analysis showed that the mutation of four RFO biosynthesis genes led to a shift of metabolic profile in the seeds,including the accumulation of several oligosaccharides-related metabolites.These mutants could contribute to precision breeding of soybean cultivars for soy food production. 展开更多
关键词 SOYBEAN Genome editing Raffinose family of oligosaccharides RAFFINOSE STACHYOSE Precision breeding
下载PDF
See the color,see the seed:GmW1 as a visual reporter for transgene and genome editing in soybean
15
作者 Li Chen Shan Yuan +5 位作者 Yupeng Cai Weiwei Yao Qiang Su Yingying Chen Jialing Zhang Wensheng Hou 《The Crop Journal》 SCIE CSCD 2023年第1期311-315,共5页
A fast and efficient recognition method of transgenic lines will greatly improve detection efficiency and reduce cost.In this study,we successfully identified the transgenic soybean plants by the color.We isolated a G... A fast and efficient recognition method of transgenic lines will greatly improve detection efficiency and reduce cost.In this study,we successfully identified the transgenic soybean plants by the color.We isolated a GmW1 gene encoding a flavonoid 3'5'-hydroxylase from a soybean cultivar ZH42(purple flower).We found that purple flowers occurred in the overexpression lines in the Jack and Williams 82 backgrounds(white flower).All plants with purple flowers were positive,and this trait seems stably inherited in the offspring.We have also obtained the editing plants,which were classified into three types according to the different flower colors appeared.We analyzed the phenotype and the homozygous types of the T_1mutants.We also found that a correspondence between flower color and stem color.This study provides a visible color reporter on soybean transformation.It can be quickly and early to identify the transgenic soybean plants by stem color of seedlings,which substantially reduces the amount of labor and cost. 展开更多
关键词 SOYBEAN GmW1 COLOR Transgenic lines Genome editing
下载PDF
PAM-Expanded Streptococcus thermophilus Cas9 C-to-T and C-to-G Base Editors for Programmable Base Editing in Mycobacteria
16
作者 Hongyuan Zhang Yifei Zhang +5 位作者 Wei-Xiao Wang Weizhong Chen Xia Zhang Xingxu Huang Wei Chen Quanjiang Ji 《Engineering》 SCIE EI CAS 2022年第8期67-77,共11页
New therapeutic strategies for the rapid and effective treatment of drug-resistant tuberculosis are highly desirable,and their development can be drastically accelerated by facile genetic manipulation methods in Mycob... New therapeutic strategies for the rapid and effective treatment of drug-resistant tuberculosis are highly desirable,and their development can be drastically accelerated by facile genetic manipulation methods in Mycobacterium tuberculosis(M.tuberculosis).Clustered regularly interspaced short palindromic repeat(CRISPR)base editors allow for rapid,robust,and programmed single-base substitutions and gene inactivation,yet no such systems are currently available in M.tuberculosis.By screening distinct CRISPR base editors,we discovered that only the unusual Streptococcus thermophilus CRISPR associated protein 9(St1Cas9)cytosine base editor(CBE)-but not the widely used Streptococcus pyogenes Cas9(SpCas9)or Lachnospiraceae bacterium Cpf1(LbCpf1)CBEs-is active in mycobacteria.Despite the notable C-to-T conversions,a high proportion of undesired byproducts exists with St1Cas9 CBE.We therefore engineered St1Cas9 CBE by means of uracil DNA glycosylase inhibitor(UGI)or uracil DNA glycosylase(UNG)fusion,yielding two new base editors(CTBE and CGBE)capable of C-to-T or C-to-G conversions with dramatically enhanced editing product purity and multiplexed editing capacity in Mycobacterium smegmatis(M.smegmatis).Because wild-type St1Cas9 recognizes a relatively strict protospacer adjacent motif(PAM)sequence for DNA targeting,we engineered a PAM-expanded St1Cas9 variant by means of structureguided protein engineering for the base editors,substantially broadening the targeting scope.We first developed and characterized CTBE and CGBE in M.smegmatis,and then applied CTBE for genome editing in M.tuberculosis.Our approaches significantly reduce the efforts and time needed for precise genetic manipulation and will facilitate functional genomics,antibiotic-resistant mechanism study,and drugtarget exploration in M.tuberculosis and related organisms. 展开更多
关键词 CRISPR Cas9 Mycobacterium tuberculosis Genome editing Base editing
下载PDF
Base editing:a brief review and a practical example
17
作者 Dongwook C.Choe Kiran Musunuru 《The Journal of Biomedical Research》 CAS CSCD 2021年第2期107-114,共8页
Genome editing has undergone rapid development in recent years,yielding new approaches to make precise changes in genes.In this review,we discuss the development of various adenine and cytosine base-editing technologi... Genome editing has undergone rapid development in recent years,yielding new approaches to make precise changes in genes.In this review,we discuss the development of various adenine and cytosine base-editing technologies,which share the ability to make specific base changes at specific sites in the genome.We also describe multiple applications of base editing in vitro and in vivo.Finally,as a practical example,we demonstrate the use of a cytosine base editor and an adenine base editor in human cells to introduce and then correct a prevalent mutation responsible for hereditary tyrosinemia type 1. 展开更多
关键词 base editing CRISPR GENETICS genome editing MUTATION
下载PDF
Genome Editing Strategies Towards Enhancement of Rice Disease Resistance
18
作者 Rukmini MISHRA WEI Zheng +1 位作者 Raj Kumar JOSHI ZHAO Kaijun 《Rice science》 SCIE CSCD 2021年第2期133-145,共13页
The emerging pests and phytopathogens have reduced the crop yield and quality, which hasthreatened the global food security. Traditional breeding methods, molecular marker-based breedingapproaches and use of genetical... The emerging pests and phytopathogens have reduced the crop yield and quality, which hasthreatened the global food security. Traditional breeding methods, molecular marker-based breedingapproaches and use of genetically modified crops have played a crucial role in strengthening the foodsecurity worldwide. However, their usages in crop improvement have been highly limited due to multiplecaveats. Genome editing tools like transcriptional activator-like effector nucleases and clustered regularlyinterspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 (CRISPR/Cas9) haveeffectively overcome limitations of the conventional breeding methods and are being widely accepted forimprovement of crops. Among the genome editing tools, the CRISPR/Cas9 system has emerged as themost powerful tool of genome editing because of its efficiency, amicability, flexibility, low cost andadaptability. Accumulated evidences indicate that genome editing has great potential in improving thedisease resistance in crop plants. In this review, we offered a brief introduction to the mechanisms of differentgenome editing systems and then discussed recent developments in CRISPR/Cas9 system-based genomeediting towards enhancement of rice disease resistance by different strategies. This review also discussed thepossible applications of recently developed genome editing approaches like CRISPR/Cas12a (formerlyknown as Cpf1) and base editors for enhancement of rice disease resistance. 展开更多
关键词 genome editing technology rice improvement CRISPR/Cas9 CRISPR/Cas12a base editor disease resistance
下载PDF
Development and Application of Prime Editing in Plants
19
作者 LIU Tingting ZOU Jinpeng +3 位作者 YANG Xi WANG Kejian RAO Yuchun WANG Chun 《Rice science》 SCIE CSCD 2023年第6期509-522,共14页
Clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targe... Clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein(Cas)-mediated genome editing has greatly accelerated progress in plant genetic research and agricultural breeding by enabling targeted genomic modifications.Moreover,the prime editing system,derived from the CRISPR/Cas system,has opened the door for even more precise genome editing.Prime editing has the capability to facilitate all 12 types of base-to-base conversions,as well as desired insertions or deletions of fragments,without inducing double-strand breaks and requiring donor DNA templet.In a short time,prime editing has been rapidly verified as functional in various plants,and can be used in plant genome functional analysis as well as precision breeding of crops.In this review,we summarize the emergence and development of prime editing,highlight recent advances in improving its efficiency in plants,introduce the current applications of prime editing in plants,and look forward to future prospects for utilizing prime editing in genetic improvement and precision molecular breeding. 展开更多
关键词 prime editing CRISPR/Cas precision genome editing crop breeding
下载PDF
CRISPR/Cas9-based Editing of Acetyl-CoA Carboxylase (ACC1) Gene in Barley
20
作者 Lin Meng-meng Sun Meng +5 位作者 Chen Feng-juan Lyu Bo Ni Fei Wu Jia-jie Allan Caplan Fu Dao-lin 《Journal of Northeast Agricultural University(English Edition)》 CAS 2020年第4期18-30,共13页
Plastid localized acetyl-CoA carboxylase(ACCase;EC 6.4.1.2)is a target for aryloxyphenoxypropionates(APPs)and cyclohexanediones(CHDs),two groups of selective herbicides used in controlling grassy weeds.Wheat and barle... Plastid localized acetyl-CoA carboxylase(ACCase;EC 6.4.1.2)is a target for aryloxyphenoxypropionates(APPs)and cyclohexanediones(CHDs),two groups of selective herbicides used in controlling grassy weeds.Wheat and barley are important cereal crops in the grass(Poaceae or Gramineae)family,and thus sensitive for those herbicides.Characterization of this form of ACCase(or ACC1)in wheat and barley is essential if these agents are used in the sustainable agriculture.In this study,it was confirmed that a single ACC1 gene presented on the second chromosome per homologous group in common wheat,wild emmer wheat,goat grass and barley.Using CRISPR/Cas9,the barley ACC1 gene was edited,specifically in the carboxyl transferase(CT)domain that was critical for herbicide responses in grass species.Two new alleles were generated,one with a 3-bp deletion leading to ACC1:p.Ile1878del and one with a 26-bp deletion causing ACC1:p.Ser2099_Lys2311del.Both were recovered as heterozygotes in the T0 generation.All the seven T0 plants harboring the 3-bp deletion grew normally,but the only T0 plant with 26-bp deletion died at the extension stage(Zadoks 32),probably because there was inadequate ACC1 activity when the plant was big.In the T1 generation,the 3-bp deletion(or Ile1878del)did not impact the edited plants in tiller numbers,tiller height,spike length and spikelet numbers,when compared to the wild-type allele in the non-edited segregants.This study demonstrated that CRISPR/Cas9 was practical to generate single amino acid deletions in the ACC1 protein and the Ile1878 deletion did not compromise plant growth.Unfortunately,the ACC1:p.Ile1878del protein did not confer resistance to the currently tested APP herbicides,including clethodim,haloxyfop,quizalofop-Pethyl and sethoxydim. 展开更多
关键词 ACCASE genome editing herbicide resistance TRITICEAE WHEAT
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部