期刊文献+
共找到124篇文章
< 1 2 7 >
每页显示 20 50 100
Genetic Variation Analysis on the Whole Genomic Sequence of a H9N2 Subtype Avian Influenza Virus Isolate 被引量:7
1
作者 YU Bo ZHANG Zhen-hua +4 位作者 JIANG Bei-yu QIAN Ai-dong LI Lin JING Xiao-dong ZHANG Jian-wei 《Animal Husbandry and Feed Science》 CAS 2009年第11期33-36,共4页
A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I... A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I-Method3 Eight complete genes were amplified by RT-PCR and sequenced. The homology and genetic evolution relationship were analyzed between these sequences and that of the seven reference strains. [Result] The whole genomic sequence of WD98 strain was 91.1% -95.8% homologous to that of seven reference strains tested. This isolate shared the highest homology (95.8%) to D/HK/Y280/97 and the lowest homology (91.1% ) to C/Pak/2/99. The HA cleavage site of the WD98 strain was R-S-S-R G, and the 226th amino acid at receptor-binding site was Gin. [ Condmion] WD98 strain belongs to mildly pathogenic avian in- fluenza virus and may not infect human. The genetic relationship is the closest between A/Chicken/Hebei/wD/98 and A/duck/HongKong/Y280/ 97, both of which belong to the sub-line of A/Chicken/Beijing/1/94 in Eurasian line. And A/Chicken/Hebei/WD/98 and A/Chicken/Beijing/1/94 are genetically distant within the same sub-line. 展开更多
关键词 Avian influenza virus H9N2 subtype genomic sequence Genetic variation
下载PDF
Genomic Sequence Determination of Classical Swine Fever Virus Persistent Infection Strain 被引量:3
2
作者 Wu Hai\|xiang, Zhang Chu\|yu , Zheng Cong yi, Guo Jun qing Institute of Virology, Wuhan University, Wuhan, 430072 《Wuhan University Journal of Natural Sciences》 EI CAS 2001年第4期864-866,共3页
Full genomic sequence of a newly isolated persistent infection strain of classical swine fever virus was firstly determined. It was demonstrated by sequence analyses that nucleotides homologies of this strain compared... Full genomic sequence of a newly isolated persistent infection strain of classical swine fever virus was firstly determined. It was demonstrated by sequence analyses that nucleotides homologies of this strain compared with virulent Shimen and vaccine HCLV were 89.7%and 87.7%, and homologies of amino acids were 94.8%and 93.3%, respectively. The sequencing results primarily suggest a tighter relationship between this persistent infection strain and virulent Shimen strain than vaccine HCLV strain. 展开更多
关键词 Classical Swine Fever Virus(CSFV) genomic sequence sequence analysis
下载PDF
The Application of Nicotiana benthamiana as a Transient Expression Host to Clone the Coding Sequences of Plant Genes
3
作者 Jianzhong Huang Peng Jia +3 位作者 Xiaoju Zhong Xiuying Guan Hongbin Zhang Honglei Ruan 《American Journal of Molecular Biology》 CAS 2024年第2期54-65,共12页
Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using co... Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes. 展开更多
关键词 Coding sequence genomic sequence Nicotiana benthamiana Plant Genes
下载PDF
Improving the accuracy of genomic prediction for meat quality traits using whole genome sequence data in pigs 被引量:1
4
作者 Zhanwei Zhuang Jie Wu +14 位作者 Yibin Qiu Donglin Ruan Rongrong Ding Cineng Xu Shenping Zhou Yuling Zhang Yiyi Liu Fucai Ma Jifei Yang Ying Sun Enqin Zheng Ming Yang Gengyuan Cai Jie Yang Zhenfang Wu 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第5期1880-1894,共15页
Background Pork quality can directly affect customer purchase tendency and meat quality traits have become valu-able in modern pork production.However,genetic improvement has been slow due to high phenotyping costs.In... Background Pork quality can directly affect customer purchase tendency and meat quality traits have become valu-able in modern pork production.However,genetic improvement has been slow due to high phenotyping costs.In this study,whole genome sequence(WGS)data was used to evaluate the prediction accuracy of genomic best linear unbiased prediction(GBLUP)for meat quality in large-scale crossbred commercial pigs.Results We produced WGS data(18,695,907 SNPs and 2,106,902 INDELs exceed quality control)from 1,469 sequenced Duroc×(Landrace×Yorkshire)pigs and developed a reference panel for meat quality including meat color score,marbling score,L*(lightness),a*(redness),and b*(yellowness)of genomic prediction.The prediction accuracy was defined as the Pearson correlation coefficient between adjusted phenotypes and genomic estimated breeding values in the validation population.Using different marker density panels derived from WGS data,accuracy differed substantially among meat quality traits,varied from 0.08 to 0.47.Results showed that MultiBLUP outperform GBLUP and yielded accuracy increases ranging from 17.39%to 75%.We optimized the marker density and found medium-and high-density marker panels are beneficial for the estimation of heritability for meat quality.Moreover,we conducted genotype imputation from 50K chip to WGS level in the same population and found average concord-ance rate to exceed 95%and r^(2)=0.81.Conclusions Overall,estimation of heritability for meat quality traits can benefit from the use of WGS data.This study showed the superiority of using WGS data to genetically improve pork quality in genomic prediction. 展开更多
关键词 genomic prediction Meat quality PIGS Whole genome sequence
下载PDF
The evolution of cancer genomic medicine in Japan and the role of the National Cancer Center Japan
5
作者 Teruhiko Yoshida Yasushi Yatabe +6 位作者 Ken Kato Genichiro Ishii Akinobu Hamada Hiroyuki Mano Kuniko Sunami Noboru Yamamoto Takashi Kohno 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第1期29-44,共16页
The journey to implement cancer genomic medicine(CGM)in oncology practice began in the 1980s,which is considered the dawn of genetic and genomic cancer research.At the time,a variety of activating oncogenic alteration... The journey to implement cancer genomic medicine(CGM)in oncology practice began in the 1980s,which is considered the dawn of genetic and genomic cancer research.At the time,a variety of activating oncogenic alterations and their functional significance were unveiled in cancer cells,which led to the development of molecular targeted therapies in the 2000s and beyond.Although CGM is still a relatively new discipline and it is difficult to predict to what extent CGM will benefit the diverse pool of cancer patients,the National Cancer Center(NCC)of Japan has already contributed considerably to CGM advancement for the conquest of cancer.Looking back at these past achievements of the NCC,we predict that the future of CGM will involve the following:1)A biobank of paired cancerous and non-cancerous tissues and cells from various cancer types and stages will be developed.The quantity and quality of these samples will be compatible with omics analyses.All biobank samples will be linked to longitudinal clinical information.2)New technologies,such as whole-genome sequencing and artificial intelligence,will be introduced and new bioresources for functional and pharmacologic analyses(e.g.,a patient-derived xenograft library)will be systematically deployed.3)Fast and bidirectional translational research(bench-to-bedside and bedside-to-bench)performed by basic researchers and clinical investigators,preferably working alongside each other at the same institution,will be implemented;4)Close collaborations between academia,industry,regulatory bodies,and funding agencies will be established.5)There will be an investment in the other branch of CGM,personalized preventive medicine,based on the individual's genetic predisposition to cancer. 展开更多
关键词 Cancer genomic medicine BIOBANK patient-derived xenograft multi-gene panel test whole genome sequencing
下载PDF
Computational analysis and prediction for exons of PAC579 genomic sequence
6
作者 黄弋 覃文新 +2 位作者 万大方 赵新泰 顾健人 《Science China(Life Sciences)》 SCIE CAS 2001年第5期533-540,共8页
To isolate the novel genes related to human hepatocellular carcinoma (HCC), we sequenced P1-derived artificial chromosome PAC579 (D17S926 locus) mapped in the minimum LOH (loss of heterozygosity) deletion region of ch... To isolate the novel genes related to human hepatocellular carcinoma (HCC), we sequenced P1-derived artificial chromosome PAC579 (D17S926 locus) mapped in the minimum LOH (loss of heterozygosity) deletion region of chromosome 17p13.3 in HCC, Four novel genes mapped in this genomic sequence area were isolated and cloned by wet-lab experiments, and the exons of these genes were located. 0-60 kb of this genomic sequence including the genes of interest was scanned with five different computational exon prediction programs as well as four splice site recognition programs. After analyzing and comparing the computationally predicted results with the wet-lab experiment results, some potential exons were predicted in the genomic sequence by using these programs. 展开更多
关键词 computational recognition and prediction EXON genomic sequence.
原文传递
Breed identification using breed‑informative SNPs and machine learning based on whole genome sequence data and SNP chip data
7
作者 Changheng Zhao Dan Wang +4 位作者 Jun Teng Cheng Yang Xinyi Zhang Xianming Wei Qin Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第5期1941-1953,共13页
Background Breed identification is useful in a variety of biological contexts.Breed identification usually involves two stages,i.e.,detection of breed-informative SNPs and breed assignment.For both stages,there are se... Background Breed identification is useful in a variety of biological contexts.Breed identification usually involves two stages,i.e.,detection of breed-informative SNPs and breed assignment.For both stages,there are several methods proposed.However,what is the optimal combination of these methods remain unclear.In this study,using the whole genome sequence data available for 13 cattle breeds from Run 8 of the 1,000 Bull Genomes Project,we compared the combinations of three methods(Delta,FST,and In)for breed-informative SNP detection and five machine learning methods(KNN,SVM,RF,NB,and ANN)for breed assignment with respect to different reference population sizes and difference numbers of most breed-informative SNPs.In addition,we evaluated the accuracy of breed identification using SNP chip data of different densities.Results We found that all combinations performed quite well with identification accuracies over 95%in all scenarios.However,there was no combination which performed the best and robust across all scenarios.We proposed to inte-grate the three breed-informative detection methods,named DFI,and integrate the three machine learning methods,KNN,SVM,and RF,named KSR.We found that the combination of these two integrated methods outperformed the other combinations with accuracies over 99%in most cases and was very robust in all scenarios.The accuracies from using SNP chip data were only slightly lower than that from using sequence data in most cases.Conclusions The current study showed that the combination of DFI and KSR was the optimal strategy.Using sequence data resulted in higher accuracies than using chip data in most cases.However,the differences were gener-ally small.In view of the cost of genotyping,using chip data is also a good option for breed identification. 展开更多
关键词 Breed identification Breed-informative SNPs genomic breed composition Machine learning Whole genome sequence data
下载PDF
Complete Nucleotide Sequence of a Newly Avirulent Newcastle Disease Virus Hubei 92(HB92) Strain 被引量:2
8
作者 PanZi-shu ChenYu-dong +4 位作者 ShaoHua-bin YangJun XiongZhong-liang WenGuo-yuan ZhangChu-yu 《Wuhan University Journal of Natural Sciences》 CAS 2004年第3期381-387,共7页
A new avirulent, heat-resistance HB92 strain of newcastle Disease Virus (NDV) was acquired from Australia V4 strain. Its complete nucleotides sequence was first determined. The entire genome of NDV HB92 consists of 15... A new avirulent, heat-resistance HB92 strain of newcastle Disease Virus (NDV) was acquired from Australia V4 strain. Its complete nucleotides sequence was first determined. The entire genome of NDV HB92 consists of 15 186 nucleotides (GenBank accession no. AY225110). It was demonstrated by sequence analysis that nucleotides homology of HB92 strain with virulent strain ZJ1 were 83.9%, and the homology compared with avirulent vaccine strain La Sota and B1 were 94.0% and 93.5%, respectively. These results might be contributive to the study of the molecular mechanism of evolution of the NDV strain HB92 and to develop the engineered recombinant vaccine. Key words newcastle disease virus - genomic sequence - sequence analysis CLC number S 852. 65 Foundation item: Supported by Hubei Natural Science Foundation (2002AB144)Biography: Pan Zhi-shu(1961-), male, Ph. D, Associate professor, research direction: molecular biology and pathogenesis of eucaryotic viruses. 展开更多
关键词 newcastle disease virus genomic sequence sequence analysis
下载PDF
Isolation and Characterization of SARS-CoV-2 in Kenya
9
作者 Albina Makio Robinson Mugasiali Irekwa +9 位作者 Matthew Mutinda Munyao Caroline Wangui Njoroge Peter Kipkemboi Rotich Tonny Teya Nyandwaro Joanne Jepkemei Yego Anne Wanjiru Mwangi James Hungo Kimotho Ronald Tanui Vincent Rutto Samson Muuo Nzou 《American Journal of Molecular Biology》 CAS 2024年第2期66-83,共18页
The discovery of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) in Wuhan, Hubei province, China, in December 2019 raised global health warnings. Quickly, in 2020, the virus crossed borders and infected i... The discovery of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) in Wuhan, Hubei province, China, in December 2019 raised global health warnings. Quickly, in 2020, the virus crossed borders and infected individuals across the world, evolving into the COVID-19 pandemic. Notably, early signs of the virus’s existence were observed in various countries before the initial outbreak in Wuhan. As of 12<sup>th</sup> of April, the respiratory disease had infected over 762 million people worldwide, with over 6.8 million deaths recorded. This has led scientists to focus their efforts on understanding the virus to develop effective means to diagnose, treat, prevent, and control this pandemic. One of the areas of focus is the isolation of this virus, which plays a crucial role in understanding the viral dynamics in the laboratory. In this study, we report the isolation and detection of locally circulating SARS-CoV-2 in Kenya. The isolates were cultured on Vero Cercopithecus cell line (CCL-81) cells, RNA extraction was conducted from the supernatants, and reverse transcriptase-polymerase chain reaction (RT-PCR). Genome sequencing was done to profile the strains phylogenetically and identify novel and previously reported mutations. Vero CCL-81 cells were able to support the growth of SARS-CoV-2 in vitro, and mutations were detected from the two isolates sequenced (001 and 002). Genome sequencing revealed the circulation of two isolates that share a close relationship with the Benin isolate with the D614G common mutation identified along the S protein. These virus isolates will be expanded and made available to the Kenya Ministry of Health and other research institutions to advance SARS-CoV-2 research in Kenya and the region. 展开更多
关键词 SARS-CoV-2 COVID-19 Whole Genome Sequencing Phylogenetic Analysis Nucleotide Substitutions Amino Acid Changes
下载PDF
To Analyze the Sensitivity of RT-PCR Assays Employing S Gene Target Failure with Whole Genome Sequencing Data during Third Wave by SARS-CoV-2 Omicron Variant
10
作者 Pooja Patel Yogita Mistry +1 位作者 Monika Patel Summaiya Mullan 《Advances in Microbiology》 CAS 2024年第5期247-255,共9页
Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the... Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community. 展开更多
关键词 SARS-CoV-2 S Gene Target Failure Whole Genome Sequencing Omicron
下载PDF
Complete genome sequences of four isolates of Citrus leaf blotch virus from citrus in China 被引量:4
11
作者 LI Ping LI Min +4 位作者 ZHANG Song WANG Jun YANG Fang-yun CAO Meng-ji LI Zhong-an 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第3期712-715,共4页
Citrus leaf blotch virus (CLBV) is a member of the genus Citrivirus, in the family Betaflexiviridae. It has been reported CLBV could infect kiwi, citrus and sweet cherry in China. Of 289 citrus samples from six regi... Citrus leaf blotch virus (CLBV) is a member of the genus Citrivirus, in the family Betaflexiviridae. It has been reported CLBV could infect kiwi, citrus and sweet cherry in China. Of 289 citrus samples from six regions of China, 15 were detected to be infected with CLBV in this study. The complete genome of four isolates of CLBV was obtained from Reikou in Sichuan (CLBV-LH), Yura Wase in Zhejiang (CLBV-YL), Bingtangcheng in Hunan (CLBV-BT), Fengjie 72-1 in Chongqing (CLBV- F J), respectively. While they all represented 8 747 nucleotides in monopartite size, excluding the poly(A) tail, each of the isolates coded three open reading frames (ORFs). Identity of the four isolates ranged from 98.9 to 99.8% to each other and from 96.8 to 98.1% to the citrus references in GenBank by multiple alignment of genomes. A phylogenetic tree based on the genome sequences of available CLBV isolates indicated that the four isolates were clustered together, suggesting that CLBV isolates from citrus in China did not have obvious variation. This is the first report of the complete nucleotide sequences of CLBV isolates infecting citrus in China. 展开更多
关键词 Citrus leaf blotch virus (CLBV) genome sequence Citrivirus
下载PDF
Complete genome sequence and proteomic analysis of a thermophilic bacteriophage BV1 被引量:2
12
作者 LIU Bin WU Suijie XIE Lianhui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2010年第3期84-89,共6页
Viruses of thermophiles are of great interest due to their roles in gene transfer, global geochemical cycle and evolution of life on earth. However, the thermophilic bacteriophages have not been studied extensively. I... Viruses of thermophiles are of great interest due to their roles in gene transfer, global geochemical cycle and evolution of life on earth. However, the thermophilic bacteriophages have not been studied extensively. In this investigation, a typical bacteriophage BV1 was obtained from a thermophilic bacterium Geobacillus sp. 6k512, which was isolated from an inshore hot spring in Xiamen of China. The BV1 contained a double-stranded linear DNA of 35 055 bp, which encodes 54 open reading frames (ORFs). Interestingly, eight of the 54 BV1 ORFs shared sequence similarities to genes from human disease-relevant bacteria. Seven proteins of the purified BV1 virions were identified by proteomic analysis. Determination of BV1 functional genomics would facilitate the better understanding of the mechanism for virus-thermophile interaction. 展开更多
关键词 THERMOPHILE BACTERIOPHAGE genome sequence proteomic analysis
下载PDF
A Roadmap for Whitefly Genomics Research:Lessons from Previous Insect Genome Projects 被引量:2
13
作者 Owain Rhys Edwards Alexie Papanicolaou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第2期269-280,共12页
Due to evolving molecular and informatics technologies,modern genome sequencing projects have more different characteristics than what most biologists have become accustomed to during the capillary-based sequencing er... Due to evolving molecular and informatics technologies,modern genome sequencing projects have more different characteristics than what most biologists have become accustomed to during the capillary-based sequencing era.In this paper,we explore the characteristics that made past insect genome projects successful and place them in the context of next-generation sequencing.By taking into account the intricacies of whitefly biology and the community,we present a roadmap for whitefly-omics,which focuses on the formation of an international consortium,deployment of informatic platforms and realistic generation of reference sequence data. 展开更多
关键词 whole genome sequencing next generation sequencing transcriptome genome consortium white paper
下载PDF
Rapid and Accurate Sequencing of Enterovirus Genomes Using MinION Nanopore Sequencer 被引量:11
14
作者 WANG Ji KE Yue Hua +6 位作者 ZHANG Yong HUANG Ke Qiang WANG Lei SHEN Xin Xin DONG Xiao Ping XU Wen Bo MA Xue Jun 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2017年第10期718-726,共9页
Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly ... Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. Methods In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Results Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. Conclusion MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use. 展开更多
关键词 Nanopore sequencing MinION Enterovirus Single molecule sequencing Viral genome sequencing
下载PDF
Complete genome of Cobetia marina JCM 21022T and phylogenomic analysis of the family Halomonadaceae 被引量:1
15
作者 唐祥海 徐奎鹏 +2 位作者 韩晓娟 莫照兰 茅云翔 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第2期528-536,共9页
Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. ~To better understand the role of the surface-associated l... Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. ~To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022 ~T using single molecule real-time sequencing technology(SMR^T) and performed comparative genomics and phylogenomics analyses. ~The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 t RNA genes, and 21 r RNA genes. ~The C. marina JCM 21022 ~T genome contained a set of crucial genes involved in surface colonization processes. ~The comparative genome analysis indicated the significant diff erences between C. marina JCM 21022 ~T and Cobetia amphilecti KMM 296(formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these diff erences, pan and core genome analysis showed similar gene functions between the two strains. ~The phylogenomic study of the family Halomonadaceae is reported here for the first time. We found that the relationships were well resolved among every genera tested, including Chromohalobacter, Halomonas, Cobetia, Kushneria, Zymobacter, and Halotalea. 展开更多
关键词 Cobetia marina JCM 21022T Halomonadaceae complete genome sequence comparative genomics PHYLOgenomicS surface colonization single molecule real-time sequencing technology(SMRT)
下载PDF
Complete nucleotide sequences of two isolates of Cherry virus A from sweet cherry in China 被引量:1
16
作者 GAO Rui LI Shi-fang LU Mei-guang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第7期1667-1671,共5页
Cherry virus A(CVA) is a member of the genusCapilovirus, in the familyBetalfexiviridae. The infection rate of CVA was high in sweet cherry in China. We determined the complete nucleotide sequences of two isolates of... Cherry virus A(CVA) is a member of the genusCapilovirus, in the familyBetalfexiviridae. The infection rate of CVA was high in sweet cherry in China. We determined the complete nucleotide sequences of two isolates of CVA from Tai’an, Shan-dong Province, China using high ifdelity PCR enzymes and speciifc primer pairs for amplifying long fragments in RT-PCR and RACE. The ful-length sequences from isolates ChTA11 and ChTA12 are both 7382 nucleotide (nt) long, excluding the poly(A) tail, encode two open reading frames (ORFs) and have similar genome organization to the two isolates in Gen-Bank. The complete nucleotide sequence of ChTA11 is 98.2 and 81.2% nt identity to the isolates from Germany and India in GenBank, respectively, and the ChTA12 isolate is 98.2 and 81.0% similar. Analysis of the nucleotide and amino acid sequences showed that the domain of unknown function (DUF1717) is more variable compared with other domains. This is the ifrst report of the complete nucleotide sequences of CVA isolates infecting sweet cherry in China. 展开更多
关键词 Cherry virus A (CVA) genome sequence Capilovirus
下载PDF
The complete genome sequence of Citrus vein enation virus from China 被引量:3
17
作者 HUANG Ai-jun SONG Zhen +3 位作者 CAO Meng-ji CHEN Hong-ming LI Zhong-an ZHOU Chang-yong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第3期598-601,共4页
The complete nucleotide sequence of an isolate of Citrus vein enation virus(CVEV-XZG) from China has been determined for the first time. The genome consisted of 5 983 nucleotides, coding for five open reading frames... The complete nucleotide sequence of an isolate of Citrus vein enation virus(CVEV-XZG) from China has been determined for the first time. The genome consisted of 5 983 nucleotides, coding for five open reading frames(ORFs), had a similar genomic organization features with Pea enation mosaic virus(PEMV). Nucleotide and deduced amino acid sequence identity of the five ORFs compared to isolate CVEV VE-1 range from 97.1 to 99.0% and 97.4 to 100.0%, these values compared to isolate PEMV-1 range from 45.2 to 51.6% and 31.1 to 45.2%. Phylogenetic analysis based on the complete genome sequence showed that the isolate CVEV-XZG had close relationship with Pea enation mosaic virus. The results supports CVEV may be a new member of genus Enamovirus. The full sequence of CVEV-XZG presented here may serve as a basis for future study of CVEV in China. 展开更多
关键词 Citrus vein enation virus(CVEV) genome sequence Enamovirus
下载PDF
Complete Genome Sequence of Mycoplasma ovipneumoniae Strain NM2010, Which Was Isolated from a Sheep in China 被引量:2
18
作者 WANG Xiao-hui HUANG Hai-bi +4 位作者 CHENG Chen WANG Ren-chao ZHENG Jia-qi HAO Yongqing ZHANG Wen-guang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第11期2562-2563,共2页
Mycoplasma ovipneumoniae, a kind of mycoplasma bacteria, commonly infects the respiratory tract causing respiratory disease in sheep and goats worldwide. Here, the complete genome sequence of M. ovipneumoniae strain N... Mycoplasma ovipneumoniae, a kind of mycoplasma bacteria, commonly infects the respiratory tract causing respiratory disease in sheep and goats worldwide. Here, the complete genome sequence of M. ovipneumoniae strain NM2010 isolated from a sheep in China was reported for the ifrst time. 展开更多
关键词 Mycoplasma ovipneumoniae strain NM2010 complete genome sequence sheep
下载PDF
Genomics of pancreatic ductal adenocarcinoma 被引量:1
19
作者 Christian Pilarsky Robert Grützmann 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2014年第4期381-385,共5页
Pancreatic cancer is one of the worst prognostic cancers because of the late diagnosis and the absence of effective treatment. Within all subtypes of this disease, ductal adenocarcinoma has the shortest survival time.... Pancreatic cancer is one of the worst prognostic cancers because of the late diagnosis and the absence of effective treatment. Within all subtypes of this disease, ductal adenocarcinoma has the shortest survival time. In recent years,global genomics profiling allowed the identification of hundreds of genes that are perturbed in pancreatic cancer. The integration of different omics sources in the study of pancreatic cancer has revealed several molecular mechanisms, indicating the complex history of its development. However, validation of these genes as biomarkers for early diagnosis, prognosis or treatment efficacy is still incomplete but should lead to new approaches for the treatment of the disease in the future. 展开更多
关键词 pancreatic ductal adenocarcinoma genomes DNA RNA next-generation sequencing precision medicine
下载PDF
Mutation Prediction for Coronaviruses Using Genome Sequence and Recurrent Neural Networks
20
作者 Pranav Pushkar Christo Ananth +3 位作者 Preeti Nagrath Jehad F.Al-Amri Vividha Anand Nayyar 《Computers, Materials & Continua》 SCIE EI 2022年第10期1601-1619,共19页
The study of viruses and their genetics has been an opportunity as well as a challenge for the scientific community.The recent ongoing SARSCov2(Severe Acute Respiratory Syndrome)pandemic proved the unpreparedness for ... The study of viruses and their genetics has been an opportunity as well as a challenge for the scientific community.The recent ongoing SARSCov2(Severe Acute Respiratory Syndrome)pandemic proved the unpreparedness for these situations.Not only the countermeasures for the effect caused by virus need to be tackled but the mutation taking place in the very genome of the virus is needed to be kept in check frequently.One major way to find out more information about such pathogens is by extracting the genetic data of such viruses.Though genetic data of viruses have been cultured and stored as well as isolated in form of their genome sequences,there is still limited methods on what new viruses can be generated in future due to mutation.This research proposes a deep learning model to predict the genome sequences of the SARS-Cov2 virus using only the previous viruses of the coronaviridae family with the help of RNN-LSTM(Recurrent Neural Network-Long ShortTerm Memory)and RNN-GRU(Gated Recurrent Unit)so that in the future,several counter measures can be taken by predicting possible changes in the genome with the help of existing mutations in the virus.After the process of testing the model,the F1-recall came out to be more than 0.95.The mutation detection’s accuracy of both the models come out about 98.5%which shows the capability of the recurrent neural network to predict future changes in the genome of virus. 展开更多
关键词 COVID-19 genome sequence CORONAVIRIDAE RNN-LSTM RNN-GRU
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部