The journey to implement cancer genomic medicine(CGM)in oncology practice began in the 1980s,which is considered the dawn of genetic and genomic cancer research.At the time,a variety of activating oncogenic alteration...The journey to implement cancer genomic medicine(CGM)in oncology practice began in the 1980s,which is considered the dawn of genetic and genomic cancer research.At the time,a variety of activating oncogenic alterations and their functional significance were unveiled in cancer cells,which led to the development of molecular targeted therapies in the 2000s and beyond.Although CGM is still a relatively new discipline and it is difficult to predict to what extent CGM will benefit the diverse pool of cancer patients,the National Cancer Center(NCC)of Japan has already contributed considerably to CGM advancement for the conquest of cancer.Looking back at these past achievements of the NCC,we predict that the future of CGM will involve the following:1)A biobank of paired cancerous and non-cancerous tissues and cells from various cancer types and stages will be developed.The quantity and quality of these samples will be compatible with omics analyses.All biobank samples will be linked to longitudinal clinical information.2)New technologies,such as whole-genome sequencing and artificial intelligence,will be introduced and new bioresources for functional and pharmacologic analyses(e.g.,a patient-derived xenograft library)will be systematically deployed.3)Fast and bidirectional translational research(bench-to-bedside and bedside-to-bench)performed by basic researchers and clinical investigators,preferably working alongside each other at the same institution,will be implemented;4)Close collaborations between academia,industry,regulatory bodies,and funding agencies will be established.5)There will be an investment in the other branch of CGM,personalized preventive medicine,based on the individual's genetic predisposition to cancer.展开更多
Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the...Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community.展开更多
Complex congenital disorders may be caused by multiple genetic alterations and/or environmental hazards. Diagnosis and management of these diseases are usually difficult. Robust next-generation sequencing (NGS) tech...Complex congenital disorders may be caused by multiple genetic alterations and/or environmental hazards. Diagnosis and management of these diseases are usually difficult. Robust next-generation sequencing (NGS) technologies provide unprecedented opportunities to maximize mutation detection and improve genetic counseling and clinical management. Targeted or whole exome sequencing (WES) mainly detects protein-coding DNA sequence aberrations and is the major DNA sequencing technology that is entering clinical practice (Liu et al., 2014).展开更多
Background Pork quality can directly affect customer purchase tendency and meat quality traits have become valu-able in modern pork production.However,genetic improvement has been slow due to high phenotyping costs.In...Background Pork quality can directly affect customer purchase tendency and meat quality traits have become valu-able in modern pork production.However,genetic improvement has been slow due to high phenotyping costs.In this study,whole genome sequence(WGS)data was used to evaluate the prediction accuracy of genomic best linear unbiased prediction(GBLUP)for meat quality in large-scale crossbred commercial pigs.Results We produced WGS data(18,695,907 SNPs and 2,106,902 INDELs exceed quality control)from 1,469 sequenced Duroc×(Landrace×Yorkshire)pigs and developed a reference panel for meat quality including meat color score,marbling score,L*(lightness),a*(redness),and b*(yellowness)of genomic prediction.The prediction accuracy was defined as the Pearson correlation coefficient between adjusted phenotypes and genomic estimated breeding values in the validation population.Using different marker density panels derived from WGS data,accuracy differed substantially among meat quality traits,varied from 0.08 to 0.47.Results showed that MultiBLUP outperform GBLUP and yielded accuracy increases ranging from 17.39%to 75%.We optimized the marker density and found medium-and high-density marker panels are beneficial for the estimation of heritability for meat quality.Moreover,we conducted genotype imputation from 50K chip to WGS level in the same population and found average concord-ance rate to exceed 95%and r^(2)=0.81.Conclusions Overall,estimation of heritability for meat quality traits can benefit from the use of WGS data.This study showed the superiority of using WGS data to genetically improve pork quality in genomic prediction.展开更多
The microbial potential of Penicillium has received critical attention.The present research aimed to elucidate the efficacy of crude enzyme secreted from Penicillium oxalicum WX-209 in degrading citrus segments and ev...The microbial potential of Penicillium has received critical attention.The present research aimed to elucidate the efficacy of crude enzyme secreted from Penicillium oxalicum WX-209 in degrading citrus segments and evaluate the safety of the process.Results showed that citrus segment membranes gradually dissolved after treatment with the crude enzyme solution,indicating good degradation capability.No significant differences in body weight,food ingestion rate,hematology,blood biochemistry,and weight changes of different organs were found between the enzyme intake and control groups.Serial experiments showed that the crude enzyme had high biological safety.Moreover,the whole genome of P.oxalicum WX-209 was sequenced by PacBio and Illumina platforms.Twenty-five scaffolds were assembled to generate 36 Mbp size of genome sequence comprising 11369 predicted genes modeled with a GC content of 48.33%.A total of 592 genes were annotated to encode enzymes related to carbohydrates,and some degradation enzyme genes were identified in strain P.oxalicum WX-209.展开更多
Objective:To surveill emerging variants by nanopore technology-based genome sequencing in different COVID-19 waves in Sri Lanka and to examine the association with the sample characteristics,and vaccination status.Met...Objective:To surveill emerging variants by nanopore technology-based genome sequencing in different COVID-19 waves in Sri Lanka and to examine the association with the sample characteristics,and vaccination status.Methods:The study analyzed 207 RNA positive swab samples received to sequence laboratory during different waves.The N gene cut-off threshold of less than 30 was considered as the major inclusion criteria.Viral RNA was extracted,and elutes were subjected to nanopore sequencing.All the sequencing data were uploaded in the publicly accessible database,GISAID.Results:The Omicron,Delta and Alpha variants accounted for 58%,22%and 4%of the variants throughout the period.Less than 1%were Kappa variant and 16%of the study samples remained unassigned.Omicron variant was circulated among all age groups and in all the provinces.Ct value and variants assigned percentage was 100%in Ct values of 10-15 while only 45%assigned Ct value over 25.Conclusions:The present study examined the emergence,prevalence,and distribution of SARS-CoV-2 variants locally and has shown that nanopore technology-based genome sequencing enables whole genome sequencing in a low resource setting country.展开更多
Medicinal plants are renowned for their abundant production of secondary metabolites,which exhibit notable pharmacological activities and great potential for drug development.The biosynthesis of secondary metabolites ...Medicinal plants are renowned for their abundant production of secondary metabolites,which exhibit notable pharmacological activities and great potential for drug development.The biosynthesis of secondary metabolites is highly intricate and influenced by various intrinsic and extrinsic factors,resulting in substantial species diversity and content variation.Consequently,precise regulation of secondary metabolite synthesis is of utmost importance.In recent years,genome sequencing has emerged as a valuable tool for investigating the synthesis and regulation of secondary metabolites in medicinal plants,facilitated by the widespread use of high-throughput sequencing technologies.This review highlights the latest advancements in genome sequencing within this field and presents several strategies for studying secondary metabolites.Specifically,the article elucidates how genome sequencing can unravel the pathways for secondary metabolite synthesis in medicinal plants,offering insights into the functions and regulatory mechanisms of participating enzymes.Comparative analyses of plant genomes allow identification of shared pathways of metabolite synthesis among species,thereby providing novel avenues for obtaining cost-effective biosynthetic intermediates.By examining individual genomic variations,genes or gene clusters associated with the synthesis of specific compounds can be discovered,indicating potential targets and directions for drug development and the exploration of alternative compound sources.Moreover,the advent of gene-editing technology has enabled the precise modifications of medicinal plant genomes.Optimization of specific secondary metabolite synthesis pathways becomes thus feasible,enabling the precise editing of target genes to regulate secondary metabolite production within cells.These findings serve as valuable references and lessons for future drug development endeavors,conservation of rare resources,and the exploration of new resources.展开更多
Background:Atherosclerosis is a chronic cardiovascular disease of great concern.However,it is difficult to establish a direct connection between conventional small animal models and clinical practice.The pig's gen...Background:Atherosclerosis is a chronic cardiovascular disease of great concern.However,it is difficult to establish a direct connection between conventional small animal models and clinical practice.The pig's genome,physiology,and anatomy reflect human biology better than other laboratory animals,which is crucial for studying the pathogenesis of atherosclerosis.Methods:We used whole-genome sequencing data from nine Bama minipigs to perform a genome-wide linkage analysis,and further used bioinformatic tools to filter and identify underlying candidate genes.Candidate gene function prediction was performed using the online prediction tool STRING 12.0.Immunohistochemistry and immunofluorescence were used to detect the expression of proteins encoded by candidate genes.Results:We mapped differential single nucleotide polymorphisms(SNPs)to genes and obtained a total of 102 differential genes,then we used GO and KEGG pathway enrichment analysis to identify four candidate genes,including SLA-1,SLA-2,SLA-3,and TAP2.nsSNPs cause changes in the primary and tertiary structures of SLA-I and TAP2 proteins,the primary structures of these two proteins have undergone amino acid changes,and the tertiary structures also show slight changes.In addition,immunohistochemistry and immunofluorescence results showed that the expression changes of TAP2 protein in coronary arteries showed a trend of increasing from the middle layer to the inner layer.Conclusions:We have identified SLA-I and TAP2 as potential susceptibility genes of atherosclerosis,highlighting the importance of antigen processing and immune response in atherogenesis.展开更多
The discovery of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) in Wuhan, Hubei province, China, in December 2019 raised global health warnings. Quickly, in 2020, the virus crossed borders and infected i...The discovery of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) in Wuhan, Hubei province, China, in December 2019 raised global health warnings. Quickly, in 2020, the virus crossed borders and infected individuals across the world, evolving into the COVID-19 pandemic. Notably, early signs of the virus’s existence were observed in various countries before the initial outbreak in Wuhan. As of 12<sup>th</sup> of April, the respiratory disease had infected over 762 million people worldwide, with over 6.8 million deaths recorded. This has led scientists to focus their efforts on understanding the virus to develop effective means to diagnose, treat, prevent, and control this pandemic. One of the areas of focus is the isolation of this virus, which plays a crucial role in understanding the viral dynamics in the laboratory. In this study, we report the isolation and detection of locally circulating SARS-CoV-2 in Kenya. The isolates were cultured on Vero Cercopithecus cell line (CCL-81) cells, RNA extraction was conducted from the supernatants, and reverse transcriptase-polymerase chain reaction (RT-PCR). Genome sequencing was done to profile the strains phylogenetically and identify novel and previously reported mutations. Vero CCL-81 cells were able to support the growth of SARS-CoV-2 in vitro, and mutations were detected from the two isolates sequenced (001 and 002). Genome sequencing revealed the circulation of two isolates that share a close relationship with the Benin isolate with the D614G common mutation identified along the S protein. These virus isolates will be expanded and made available to the Kenya Ministry of Health and other research institutions to advance SARS-CoV-2 research in Kenya and the region.展开更多
Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using co...Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.展开更多
Objective: To determine the prevalence of colonization and transmission of carbapenem-resistant Gram-negative organisms in order to develop of an effective infection prevention program. Design: Cross-sectional study w...Objective: To determine the prevalence of colonization and transmission of carbapenem-resistant Gram-negative organisms in order to develop of an effective infection prevention program. Design: Cross-sectional study with carbapenem-resistant organisms (CRO) colonization detection from the fecal specimens of 20 Health Care Workers (HCWs) and 67 residents and 175 random environment specimens from September 2022 to September 2023. Setting: A Care and Protection Centre of Orphaned Children in South of HCM City. Participants: It included 20 HCWs, 67 residents, and 175 randomly collected environmental specimens. Method: Rectal and environmental swabs were collected from 20 HCWs, 67 residents (most of them were children), and 175 environmental specimens. MELAB Chromogenic CARBA agar plates, Card NID, and NMIC-500 CPO of the BD Phoenix TM Automated Microbiology System and whole genome sequencing (WGS) were the tests to screen, confirm CROs, respectively and determine CRO colonization and transmission between HCWs, residents, and the environment. Result: We detected 36 CRO isolates, including 6, 11 and 19 CROs found in 6 HCWs, 10 residents and 19 environments. The prevalence of detectable CRO was 30% (6/20) in HCWs, 14.92% (10/67) in residents, and 10.86% (19/175) in environmental swabs in our study. WGS demonstrated CRO colonization and transmission with the clonal spread of E. coli and A. nosocomialis, among HCWs and residents (children). Conclusion: Significant CRO colonization and transmission was evident in HCWs, residents, and the center environment. Cleaning and disinfection of the environment and performing regular hand hygiene are priorities to reduce the risk of CRO colonization and transmission.展开更多
Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and h...Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and high-throughput data. Currently, high-throughput sequencing technology has been widely applied in multi-level researches on genomics, transcriptomics and epigenomics. And it has fundamentally changed the way we approach problems in basic and translational researches and created many new possibilities. This paper presented a general description of high-throughput sequencing technology and a comprehensive review of its application with plain, concisely and precisely. In order to help researchers finish their work faster and better, promote science amateurs and understand it easier and better.展开更多
Drought stress is an important factor affecting soybean yield.Improving drought tolerance of soybean varieties can increase yield and yield stability when the stress occurs.Identifying QTL related to drought tolerance...Drought stress is an important factor affecting soybean yield.Improving drought tolerance of soybean varieties can increase yield and yield stability when the stress occurs.Identifying QTL related to drought tolerance using molecular marker-assisted selection is able to facilitate the development of drought-tolerant soybean varieties.In this study,we used a high-yielding and drought-sensitive cultivar‘Zhonghuang 35’and a drought-tolerant cultivar‘Jindou 21’to establish F6:9 recombinant inbred lines.We constructed a highdensity genetic map using specific locus amplified fragment sequencing(SLAF-Seq)technology.The genetic map contained 8078 SLAF markers distributing across 20 soybean chromosomes with a total genetic distance of 3780.98 c M and an average genetic distance of0.59 c M between adjacent markers.Two treatments(irrigation and drought)were used in the field tests,the Additive-Inclusive Composite Interval Mapping(ICIM-ADD)was used to call QTL,and plant height and seed weight per plant were used as the indicators of drought tolerance.We identified a total of 23 QTL related to drought tolerance.Among them,seven QTL(q PH2,q PH6,q PH7,q PH17,q PH19-1,q PH19-2,and q PH19-3)on chromosomes 2,6,7,17,and 19 were related to plant height,and five QTL(q SWPP2,q SWPP6,q SWPP13,q SWPP17,and q SWPP19)on chromosomes 2,6,13,17,and 19 were related to seed weight and could be considered as the major QTL.In addition,three common QTL(q PH6/q SWPP6,q PH17/q SWPP17,and q PH19-3/q SWPP19)for both plant height and seed weight per plant were located in the same genomic regions on the same chromosomes.Three(q PH2,q PH17,and q PH19-2)and four novel QTL(q SWPP2,q SWPP13,q SWPP17,and q SWPP19)were identified for plant height and seed weight per plant,respectively.Two pairs of QTL(q PH2/q SWPP2 and q PH17/q SWPP17)were also common for both plant height and seed weight per plant.These QTL and closely linked SLAF markers could be used to accelerate breeding for drought tolerant cultivars via MAS.展开更多
Objective:Epithelial cancers often originate from progenitor cells,while the origin of hepatocellular carcinoma(HCC)is still controversial.HCC,one of the deadliest cancers,is closely linked with liver injuries and chr...Objective:Epithelial cancers often originate from progenitor cells,while the origin of hepatocellular carcinoma(HCC)is still controversial.HCC,one of the deadliest cancers,is closely linked with liver injuries and chronic inflammation,which trigger massive infiltration of bone marrow-derived cells(BMDCs)during liver repair.Methods:To address the possible roles of BMDCs in HCC origination,we established a diethylnitrosamine(DEN)-induced HCC model in bone marrow transplanted mice.Immunohistochemistry and frozen tissue immunofluorescence were used to verify DENinduced HCC in the pathology of the disease.The cellular origin of DEN-induced HCC was further studied by single cell sequencing,single-cell nested PCR,and immunofluorescence-fluorescence in situ hybridization.Results:Studies by using single cell sequencing and biochemical analysis revealed that HCC cells in these mice were coming from donor mice BMDCs,and not from recipient mice.Furthermore,the copy numbers of mouse orthologs of several HCC-related genes previously reported in human HCC were also altered in our mouse model.DEN-induced HCCs exhibited a similar histological phenotype and genomic profile as human HCCs.Conclusions:These results suggested that BMDCs are an important origin of HCC,which provide important clues to HCC prevention,detection,and treatments.展开更多
A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I...A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I-Method3 Eight complete genes were amplified by RT-PCR and sequenced. The homology and genetic evolution relationship were analyzed between these sequences and that of the seven reference strains. [Result] The whole genomic sequence of WD98 strain was 91.1% -95.8% homologous to that of seven reference strains tested. This isolate shared the highest homology (95.8%) to D/HK/Y280/97 and the lowest homology (91.1% ) to C/Pak/2/99. The HA cleavage site of the WD98 strain was R-S-S-R G, and the 226th amino acid at receptor-binding site was Gin. [ Condmion] WD98 strain belongs to mildly pathogenic avian in- fluenza virus and may not infect human. The genetic relationship is the closest between A/Chicken/Hebei/wD/98 and A/duck/HongKong/Y280/ 97, both of which belong to the sub-line of A/Chicken/Beijing/1/94 in Eurasian line. And A/Chicken/Hebei/WD/98 and A/Chicken/Beijing/1/94 are genetically distant within the same sub-line.展开更多
Cyanophages are ubiquitous and essential components of the aquatic environment and play an important role in the termination of algal blooms.As such,they have attracted widespread interest.PP was the first isolated cy...Cyanophages are ubiquitous and essential components of the aquatic environment and play an important role in the termination of algal blooms.As such,they have attracted widespread interest.PP was the first isolated cyanophage in China,which infects Plectonema boryanum and Phormidium foveolarum.In this study,this cyanophage was purified three times by a double-agar overlay plaque assay and characterized.Its genome was extracted,totally sequenced and analyzed.Electron microscopy revealed a particle with an icosahedral head connected to a short stubby tail.Bioassays showed that PP was quite virulent.The genome of PP is a 42,480 base pair(bp),linear,double-stranded DNA molecule with 222 bp terminal repeats.It has high similarity with the known Pf-WMP3 sequence.It contains 41 open reading frames(ORFs),17 of which were annotated.Intriguingly,the genome can be divided into two completely different parts,which differ both in orientation and function.展开更多
Full genomic sequence of a newly isolated persistent infection strain of classical swine fever virus was firstly determined. It was demonstrated by sequence analyses that nucleotides homologies of this strain compared...Full genomic sequence of a newly isolated persistent infection strain of classical swine fever virus was firstly determined. It was demonstrated by sequence analyses that nucleotides homologies of this strain compared with virulent Shimen and vaccine HCLV were 89.7%and 87.7%, and homologies of amino acids were 94.8%and 93.3%, respectively. The sequencing results primarily suggest a tighter relationship between this persistent infection strain and virulent Shimen strain than vaccine HCLV strain.展开更多
Due to evolving molecular and informatics technologies,modern genome sequencing projects have more different characteristics than what most biologists have become accustomed to during the capillary-based sequencing er...Due to evolving molecular and informatics technologies,modern genome sequencing projects have more different characteristics than what most biologists have become accustomed to during the capillary-based sequencing era.In this paper,we explore the characteristics that made past insect genome projects successful and place them in the context of next-generation sequencing.By taking into account the intricacies of whitefly biology and the community,we present a roadmap for whitefly-omics,which focuses on the formation of an international consortium,deployment of informatic platforms and realistic generation of reference sequence data.展开更多
Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly ...Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. Methods In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Results Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. Conclusion MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use.展开更多
Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated li...Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022T using single molecule real-time sequencing technology (SMRT) and performed comparative genomics and phylogenomics analyses. The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 tRNA genes, and 21 rRNA genes. The C. marina JCM 2102U genome contained a set of crucial genes involved in surface colonization processes. The comparative genome analysis indicated the significant differences between C. marina JCM 21022T and Cobetia amphilecti KMM 296 (formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these differences, pan and core genome analysis showed similar gene functions between the two strains. The phylogenomic study of the family Halomonadaceae is relationships were well resolved among every genera Cobetia, Kushneria, Zymobacter, and Halotalea. reported here for the first time. We found that the tested, including Chromohalobacter, Halomonas,展开更多
文摘The journey to implement cancer genomic medicine(CGM)in oncology practice began in the 1980s,which is considered the dawn of genetic and genomic cancer research.At the time,a variety of activating oncogenic alterations and their functional significance were unveiled in cancer cells,which led to the development of molecular targeted therapies in the 2000s and beyond.Although CGM is still a relatively new discipline and it is difficult to predict to what extent CGM will benefit the diverse pool of cancer patients,the National Cancer Center(NCC)of Japan has already contributed considerably to CGM advancement for the conquest of cancer.Looking back at these past achievements of the NCC,we predict that the future of CGM will involve the following:1)A biobank of paired cancerous and non-cancerous tissues and cells from various cancer types and stages will be developed.The quantity and quality of these samples will be compatible with omics analyses.All biobank samples will be linked to longitudinal clinical information.2)New technologies,such as whole-genome sequencing and artificial intelligence,will be introduced and new bioresources for functional and pharmacologic analyses(e.g.,a patient-derived xenograft library)will be systematically deployed.3)Fast and bidirectional translational research(bench-to-bedside and bedside-to-bench)performed by basic researchers and clinical investigators,preferably working alongside each other at the same institution,will be implemented;4)Close collaborations between academia,industry,regulatory bodies,and funding agencies will be established.5)There will be an investment in the other branch of CGM,personalized preventive medicine,based on the individual's genetic predisposition to cancer.
文摘Introduction: Omicron is a highly divergent variant of concern (VOCs) of a severe acute respiratory syndrome SARS-CoV-2. It carries a high number of mutations in its spike protein hence;it is more transmissible in the community by immune evasion mechanisms. Due to mutation within S gene, most Omicron variants have reported S gene target failure (SGTF) with some commercially available PCR kits. Such diagnostic features can be used as markers to screen Omicron. However, Whole Genome Sequencing (WGS) is the only gold standard approach to confirm novel microorganisms at genetically level as similar mutations can also be found in other variants that are circulating at low frequencies worldwide. This Retrospective study is aimed to assess RT-PCR sensitivity in the detection of S gene target failure in comparison with whole genome sequencing to detect variants of Omicron. Methods: We have analysed retrospective data of SARS-CoV-2 positive RT-PCR samples for S gene target failure (SGTF) with TaqPath COVID-19 RT-PCR Combo Kit (ThermoFisher) and combined with sequencing technologies to study the emerged pattern of SARS-CoV-2 variants during third wave at the tertiary care centre, Surat. Results: From the first day of December 2021 till the end of February 2022, a total of 321,803 diagnostic RT-PCR tests for SARS-CoV-2 were performed, of which 20,566 positive cases were reported at our tertiary care centre with an average cumulative positivity of 6.39% over a period of three months. In the month of December 21 samples characterized by the SGTF (70/129) were suggestive of being infected by the Omicron variant and identified as Omicron (B.1.1.529 lineage) when sequence. In the month of January, we analysed a subset of samples (n = 618) with SGTF (24%) and without SGTF (76%) with Ct values Conclusions: During the COVID-19 pandemic, it took almost more than 15 days to diagnose infection and identify pathogen by sequencing technology. In contrast to that molecular assay provided quick identification with the help of SGTF phenomenon within 5 hours of duration. This strategy helps scientists and health policymakers for the quick isolation and identification of clusters. That ultimately results in a decreased transmission of pathogen among the community.
基金supported by the grants from the National High Technology Research and Development Program of China (863 Program) (No. 2012AA02A201)the Tianjin Natural Science Foundation (No. 13JCQNJC10400)
文摘Complex congenital disorders may be caused by multiple genetic alterations and/or environmental hazards. Diagnosis and management of these diseases are usually difficult. Robust next-generation sequencing (NGS) technologies provide unprecedented opportunities to maximize mutation detection and improve genetic counseling and clinical management. Targeted or whole exome sequencing (WES) mainly detects protein-coding DNA sequence aberrations and is the major DNA sequencing technology that is entering clinical practice (Liu et al., 2014).
基金supported by a Technical Innovation of Crossbred in Swine and Breed High Fertility Lines Project(2022B0202090002)a Local Innovative and Research Teams Project of Guangdong Province(2019BT02N630)+1 种基金a Natural Science Foundation of Guangdong Province project(2018B030313011)Innovative Teams of Modern Agriculture and Industry Technology System of Guangdong Province(2022KJ26).
文摘Background Pork quality can directly affect customer purchase tendency and meat quality traits have become valu-able in modern pork production.However,genetic improvement has been slow due to high phenotyping costs.In this study,whole genome sequence(WGS)data was used to evaluate the prediction accuracy of genomic best linear unbiased prediction(GBLUP)for meat quality in large-scale crossbred commercial pigs.Results We produced WGS data(18,695,907 SNPs and 2,106,902 INDELs exceed quality control)from 1,469 sequenced Duroc×(Landrace×Yorkshire)pigs and developed a reference panel for meat quality including meat color score,marbling score,L*(lightness),a*(redness),and b*(yellowness)of genomic prediction.The prediction accuracy was defined as the Pearson correlation coefficient between adjusted phenotypes and genomic estimated breeding values in the validation population.Using different marker density panels derived from WGS data,accuracy differed substantially among meat quality traits,varied from 0.08 to 0.47.Results showed that MultiBLUP outperform GBLUP and yielded accuracy increases ranging from 17.39%to 75%.We optimized the marker density and found medium-and high-density marker panels are beneficial for the estimation of heritability for meat quality.Moreover,we conducted genotype imputation from 50K chip to WGS level in the same population and found average concord-ance rate to exceed 95%and r^(2)=0.81.Conclusions Overall,estimation of heritability for meat quality traits can benefit from the use of WGS data.This study showed the superiority of using WGS data to genetically improve pork quality in genomic prediction.
基金the financial support of the National Natural Science Foundation of China[32201960,32073020]Science and Technology Innovation Program of Hunan Province[2022RC1150]+2 种基金Changsha Municipal Natural Science Foundation[kq2202332]Hunan innovative province construction project[2019NK2041]Agricultural Science and Technology Innovation Project of Hunan Province[2021CX05].
文摘The microbial potential of Penicillium has received critical attention.The present research aimed to elucidate the efficacy of crude enzyme secreted from Penicillium oxalicum WX-209 in degrading citrus segments and evaluate the safety of the process.Results showed that citrus segment membranes gradually dissolved after treatment with the crude enzyme solution,indicating good degradation capability.No significant differences in body weight,food ingestion rate,hematology,blood biochemistry,and weight changes of different organs were found between the enzyme intake and control groups.Serial experiments showed that the crude enzyme had high biological safety.Moreover,the whole genome of P.oxalicum WX-209 was sequenced by PacBio and Illumina platforms.Twenty-five scaffolds were assembled to generate 36 Mbp size of genome sequence comprising 11369 predicted genes modeled with a GC content of 48.33%.A total of 592 genes were annotated to encode enzymes related to carbohydrates,and some degradation enzyme genes were identified in strain P.oxalicum WX-209.
文摘Objective:To surveill emerging variants by nanopore technology-based genome sequencing in different COVID-19 waves in Sri Lanka and to examine the association with the sample characteristics,and vaccination status.Methods:The study analyzed 207 RNA positive swab samples received to sequence laboratory during different waves.The N gene cut-off threshold of less than 30 was considered as the major inclusion criteria.Viral RNA was extracted,and elutes were subjected to nanopore sequencing.All the sequencing data were uploaded in the publicly accessible database,GISAID.Results:The Omicron,Delta and Alpha variants accounted for 58%,22%and 4%of the variants throughout the period.Less than 1%were Kappa variant and 16%of the study samples remained unassigned.Omicron variant was circulated among all age groups and in all the provinces.Ct value and variants assigned percentage was 100%in Ct values of 10-15 while only 45%assigned Ct value over 25.Conclusions:The present study examined the emergence,prevalence,and distribution of SARS-CoV-2 variants locally and has shown that nanopore technology-based genome sequencing enables whole genome sequencing in a low resource setting country.
基金funded by the National Natural Science Foundation of China,grant number 81603221.
文摘Medicinal plants are renowned for their abundant production of secondary metabolites,which exhibit notable pharmacological activities and great potential for drug development.The biosynthesis of secondary metabolites is highly intricate and influenced by various intrinsic and extrinsic factors,resulting in substantial species diversity and content variation.Consequently,precise regulation of secondary metabolite synthesis is of utmost importance.In recent years,genome sequencing has emerged as a valuable tool for investigating the synthesis and regulation of secondary metabolites in medicinal plants,facilitated by the widespread use of high-throughput sequencing technologies.This review highlights the latest advancements in genome sequencing within this field and presents several strategies for studying secondary metabolites.Specifically,the article elucidates how genome sequencing can unravel the pathways for secondary metabolite synthesis in medicinal plants,offering insights into the functions and regulatory mechanisms of participating enzymes.Comparative analyses of plant genomes allow identification of shared pathways of metabolite synthesis among species,thereby providing novel avenues for obtaining cost-effective biosynthetic intermediates.By examining individual genomic variations,genes or gene clusters associated with the synthesis of specific compounds can be discovered,indicating potential targets and directions for drug development and the exploration of alternative compound sources.Moreover,the advent of gene-editing technology has enabled the precise modifications of medicinal plant genomes.Optimization of specific secondary metabolite synthesis pathways becomes thus feasible,enabling the precise editing of target genes to regulate secondary metabolite production within cells.These findings serve as valuable references and lessons for future drug development endeavors,conservation of rare resources,and the exploration of new resources.
基金supported by the Special Scientific Research Project of Army Laboratory Animals(No.SYDW[2020]01)National Natural Science Foundation of ChinaNo.32370568。
文摘Background:Atherosclerosis is a chronic cardiovascular disease of great concern.However,it is difficult to establish a direct connection between conventional small animal models and clinical practice.The pig's genome,physiology,and anatomy reflect human biology better than other laboratory animals,which is crucial for studying the pathogenesis of atherosclerosis.Methods:We used whole-genome sequencing data from nine Bama minipigs to perform a genome-wide linkage analysis,and further used bioinformatic tools to filter and identify underlying candidate genes.Candidate gene function prediction was performed using the online prediction tool STRING 12.0.Immunohistochemistry and immunofluorescence were used to detect the expression of proteins encoded by candidate genes.Results:We mapped differential single nucleotide polymorphisms(SNPs)to genes and obtained a total of 102 differential genes,then we used GO and KEGG pathway enrichment analysis to identify four candidate genes,including SLA-1,SLA-2,SLA-3,and TAP2.nsSNPs cause changes in the primary and tertiary structures of SLA-I and TAP2 proteins,the primary structures of these two proteins have undergone amino acid changes,and the tertiary structures also show slight changes.In addition,immunohistochemistry and immunofluorescence results showed that the expression changes of TAP2 protein in coronary arteries showed a trend of increasing from the middle layer to the inner layer.Conclusions:We have identified SLA-I and TAP2 as potential susceptibility genes of atherosclerosis,highlighting the importance of antigen processing and immune response in atherogenesis.
文摘The discovery of Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) in Wuhan, Hubei province, China, in December 2019 raised global health warnings. Quickly, in 2020, the virus crossed borders and infected individuals across the world, evolving into the COVID-19 pandemic. Notably, early signs of the virus’s existence were observed in various countries before the initial outbreak in Wuhan. As of 12<sup>th</sup> of April, the respiratory disease had infected over 762 million people worldwide, with over 6.8 million deaths recorded. This has led scientists to focus their efforts on understanding the virus to develop effective means to diagnose, treat, prevent, and control this pandemic. One of the areas of focus is the isolation of this virus, which plays a crucial role in understanding the viral dynamics in the laboratory. In this study, we report the isolation and detection of locally circulating SARS-CoV-2 in Kenya. The isolates were cultured on Vero Cercopithecus cell line (CCL-81) cells, RNA extraction was conducted from the supernatants, and reverse transcriptase-polymerase chain reaction (RT-PCR). Genome sequencing was done to profile the strains phylogenetically and identify novel and previously reported mutations. Vero CCL-81 cells were able to support the growth of SARS-CoV-2 in vitro, and mutations were detected from the two isolates sequenced (001 and 002). Genome sequencing revealed the circulation of two isolates that share a close relationship with the Benin isolate with the D614G common mutation identified along the S protein. These virus isolates will be expanded and made available to the Kenya Ministry of Health and other research institutions to advance SARS-CoV-2 research in Kenya and the region.
文摘Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.
文摘Objective: To determine the prevalence of colonization and transmission of carbapenem-resistant Gram-negative organisms in order to develop of an effective infection prevention program. Design: Cross-sectional study with carbapenem-resistant organisms (CRO) colonization detection from the fecal specimens of 20 Health Care Workers (HCWs) and 67 residents and 175 random environment specimens from September 2022 to September 2023. Setting: A Care and Protection Centre of Orphaned Children in South of HCM City. Participants: It included 20 HCWs, 67 residents, and 175 randomly collected environmental specimens. Method: Rectal and environmental swabs were collected from 20 HCWs, 67 residents (most of them were children), and 175 environmental specimens. MELAB Chromogenic CARBA agar plates, Card NID, and NMIC-500 CPO of the BD Phoenix TM Automated Microbiology System and whole genome sequencing (WGS) were the tests to screen, confirm CROs, respectively and determine CRO colonization and transmission between HCWs, residents, and the environment. Result: We detected 36 CRO isolates, including 6, 11 and 19 CROs found in 6 HCWs, 10 residents and 19 environments. The prevalence of detectable CRO was 30% (6/20) in HCWs, 14.92% (10/67) in residents, and 10.86% (19/175) in environmental swabs in our study. WGS demonstrated CRO colonization and transmission with the clonal spread of E. coli and A. nosocomialis, among HCWs and residents (children). Conclusion: Significant CRO colonization and transmission was evident in HCWs, residents, and the center environment. Cleaning and disinfection of the environment and performing regular hand hygiene are priorities to reduce the risk of CRO colonization and transmission.
基金Supported by the National Natural Science Foundations of China(3127218631301791)
文摘Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and high-throughput data. Currently, high-throughput sequencing technology has been widely applied in multi-level researches on genomics, transcriptomics and epigenomics. And it has fundamentally changed the way we approach problems in basic and translational researches and created many new possibilities. This paper presented a general description of high-throughput sequencing technology and a comprehensive review of its application with plain, concisely and precisely. In order to help researchers finish their work faster and better, promote science amateurs and understand it easier and better.
基金supported by the National Key Research and Development Program of China(2016YFD0100201 and 2016YFD0100304)the National Science and Technological Innovation Program of China。
文摘Drought stress is an important factor affecting soybean yield.Improving drought tolerance of soybean varieties can increase yield and yield stability when the stress occurs.Identifying QTL related to drought tolerance using molecular marker-assisted selection is able to facilitate the development of drought-tolerant soybean varieties.In this study,we used a high-yielding and drought-sensitive cultivar‘Zhonghuang 35’and a drought-tolerant cultivar‘Jindou 21’to establish F6:9 recombinant inbred lines.We constructed a highdensity genetic map using specific locus amplified fragment sequencing(SLAF-Seq)technology.The genetic map contained 8078 SLAF markers distributing across 20 soybean chromosomes with a total genetic distance of 3780.98 c M and an average genetic distance of0.59 c M between adjacent markers.Two treatments(irrigation and drought)were used in the field tests,the Additive-Inclusive Composite Interval Mapping(ICIM-ADD)was used to call QTL,and plant height and seed weight per plant were used as the indicators of drought tolerance.We identified a total of 23 QTL related to drought tolerance.Among them,seven QTL(q PH2,q PH6,q PH7,q PH17,q PH19-1,q PH19-2,and q PH19-3)on chromosomes 2,6,7,17,and 19 were related to plant height,and five QTL(q SWPP2,q SWPP6,q SWPP13,q SWPP17,and q SWPP19)on chromosomes 2,6,13,17,and 19 were related to seed weight and could be considered as the major QTL.In addition,three common QTL(q PH6/q SWPP6,q PH17/q SWPP17,and q PH19-3/q SWPP19)for both plant height and seed weight per plant were located in the same genomic regions on the same chromosomes.Three(q PH2,q PH17,and q PH19-2)and four novel QTL(q SWPP2,q SWPP13,q SWPP17,and q SWPP19)were identified for plant height and seed weight per plant,respectively.Two pairs of QTL(q PH2/q SWPP2 and q PH17/q SWPP17)were also common for both plant height and seed weight per plant.These QTL and closely linked SLAF markers could be used to accelerate breeding for drought tolerant cultivars via MAS.
基金supported by the grants from the National Natural Science Foundation of China(Grant No.81902401,81972656,31671421,81970107,81600083)the National 135 Major Project of China(Grant No.2018ZX10723204,2018ZX10302205)+3 种基金the Natural Science Foundation of Tianjin(Grant No.19JCQNJC09000)the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2018PT32034)CAMS Innovation Fund for Medical Sciences(Grant No.2016-12M-1-003)supported by the China Scholarship Council(Grant No.201906940003)。
文摘Objective:Epithelial cancers often originate from progenitor cells,while the origin of hepatocellular carcinoma(HCC)is still controversial.HCC,one of the deadliest cancers,is closely linked with liver injuries and chronic inflammation,which trigger massive infiltration of bone marrow-derived cells(BMDCs)during liver repair.Methods:To address the possible roles of BMDCs in HCC origination,we established a diethylnitrosamine(DEN)-induced HCC model in bone marrow transplanted mice.Immunohistochemistry and frozen tissue immunofluorescence were used to verify DENinduced HCC in the pathology of the disease.The cellular origin of DEN-induced HCC was further studied by single cell sequencing,single-cell nested PCR,and immunofluorescence-fluorescence in situ hybridization.Results:Studies by using single cell sequencing and biochemical analysis revealed that HCC cells in these mice were coming from donor mice BMDCs,and not from recipient mice.Furthermore,the copy numbers of mouse orthologs of several HCC-related genes previously reported in human HCC were also altered in our mouse model.DEN-induced HCCs exhibited a similar histological phenotype and genomic profile as human HCCs.Conclusions:These results suggested that BMDCs are an important origin of HCC,which provide important clues to HCC prevention,detection,and treatments.
基金supported by subproject of National Program on Key Basic Research Project (973 Program )(2005CB523001)
文摘A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I-Method3 Eight complete genes were amplified by RT-PCR and sequenced. The homology and genetic evolution relationship were analyzed between these sequences and that of the seven reference strains. [Result] The whole genomic sequence of WD98 strain was 91.1% -95.8% homologous to that of seven reference strains tested. This isolate shared the highest homology (95.8%) to D/HK/Y280/97 and the lowest homology (91.1% ) to C/Pak/2/99. The HA cleavage site of the WD98 strain was R-S-S-R G, and the 226th amino acid at receptor-binding site was Gin. [ Condmion] WD98 strain belongs to mildly pathogenic avian in- fluenza virus and may not infect human. The genetic relationship is the closest between A/Chicken/Hebei/wD/98 and A/duck/HongKong/Y280/ 97, both of which belong to the sub-line of A/Chicken/Beijing/1/94 in Eurasian line. And A/Chicken/Hebei/WD/98 and A/Chicken/Beijing/1/94 are genetically distant within the same sub-line.
文摘Cyanophages are ubiquitous and essential components of the aquatic environment and play an important role in the termination of algal blooms.As such,they have attracted widespread interest.PP was the first isolated cyanophage in China,which infects Plectonema boryanum and Phormidium foveolarum.In this study,this cyanophage was purified three times by a double-agar overlay plaque assay and characterized.Its genome was extracted,totally sequenced and analyzed.Electron microscopy revealed a particle with an icosahedral head connected to a short stubby tail.Bioassays showed that PP was quite virulent.The genome of PP is a 42,480 base pair(bp),linear,double-stranded DNA molecule with 222 bp terminal repeats.It has high similarity with the known Pf-WMP3 sequence.It contains 41 open reading frames(ORFs),17 of which were annotated.Intriguingly,the genome can be divided into two completely different parts,which differ both in orientation and function.
基金Supported by National Basic Research Developmental Project ( G19990 1190 0 ) . Gen Bank NO.:AF40 7339
文摘Full genomic sequence of a newly isolated persistent infection strain of classical swine fever virus was firstly determined. It was demonstrated by sequence analyses that nucleotides homologies of this strain compared with virulent Shimen and vaccine HCLV were 89.7%and 87.7%, and homologies of amino acids were 94.8%and 93.3%, respectively. The sequencing results primarily suggest a tighter relationship between this persistent infection strain and virulent Shimen strain than vaccine HCLV strain.
基金supported by the CSIRO Office of the Chief Executive(OCE),Australia
文摘Due to evolving molecular and informatics technologies,modern genome sequencing projects have more different characteristics than what most biologists have become accustomed to during the capillary-based sequencing era.In this paper,we explore the characteristics that made past insect genome projects successful and place them in the context of next-generation sequencing.By taking into account the intricacies of whitefly biology and the community,we present a roadmap for whitefly-omics,which focuses on the formation of an international consortium,deployment of informatic platforms and realistic generation of reference sequence data.
基金supported by the National key research and development plan(2016TFC1202700,2016YFC1200900)Beijing Municipal Science&Technology Commission project(grant numbers D151100002115003)Guangzhou Municipal Science&Technology Commission project(grant numbers 2015B2150820)
文摘Objective Knowledge of an enterovirus genome sequence is very important in epidemiological investigation to identify transmission patterns and ascertain the extent of an outbreak. The MinION sequencer is increasingly used to sequence various viral pathogens in many clinical situations because of its long reads, portability, real-time accessibility of sequenced data, and very low initial costs. However, information is lacking on MinION sequencing of enterovirus genomes. Methods In this proof-of-concept study using Enterovirus 71 (EV71) and Coxsackievirus A16 (CA16) strains as examples, we established an amplicon-based whole genome sequencing method using MinION. We explored the accuracy, minimum sequencing time, discrimination and high-throughput sequencing ability of MinION, and compared its performance with Sanger sequencing. Results Within the first minute (min) of sequencing, the accuracy of MinION was 98.5% for the single EV71 strain and 94.12%-97.33% for 10 genetically-related CA16 strains. In as little as 14 min, 99% identity was reached for the single EV71 strain, and in 17 min (on average), 99% identity was achieved for 10 CA16 strains in a single run. Conclusion MinION is suitable for whole genome sequencing of enteroviruses with sufficient accuracy and fine discrimination and has the potential as a fast, reliable and convenient method for routine use.
基金Supported by the National Natural Science Foundation of China(Nos.41006082,31372517)
文摘Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022T using single molecule real-time sequencing technology (SMRT) and performed comparative genomics and phylogenomics analyses. The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 tRNA genes, and 21 rRNA genes. The C. marina JCM 2102U genome contained a set of crucial genes involved in surface colonization processes. The comparative genome analysis indicated the significant differences between C. marina JCM 21022T and Cobetia amphilecti KMM 296 (formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these differences, pan and core genome analysis showed similar gene functions between the two strains. The phylogenomic study of the family Halomonadaceae is relationships were well resolved among every genera Cobetia, Kushneria, Zymobacter, and Halotalea. reported here for the first time. We found that the tested, including Chromohalobacter, Halomonas,