期刊文献+
共找到2,776篇文章
< 1 2 139 >
每页显示 20 50 100
Chromosome-level genome and population genomics of the intermediate horseshoe bat(Rhinolophus affinis)reveal the molecular basis of virus tolerance in Rhinolophus and echolocation call frequency variation
1
作者 Le Zhao Jiaqing Yuan +8 位作者 Guiqiang Wang Haohao Jing Chen Huang Lulu Xu Xiao Xu Ting Sun Wu Chen Xiuguang Mao Gang Li 《Zoological Research》 SCIE CSCD 2024年第5期1147-1160,共14页
Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,... Horseshoe bats(genus Rhinolophus,family Rhinolophidae)represent an important group within chiropteran phylogeny due to their distinctive traits,including constant high-frequency echolocation,rapid karyotype evolution,and unique immune system.Advances in evolutionary biology,supported by high-quality reference genomes and comprehensive whole-genome data,have significantly enhanced our understanding of species origins,speciation mechanisms,adaptive evolutionary processes,and phenotypic diversity.However,genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data,with only a single published genome of R.ferrumequinum currently available.In this study,we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat(R.affinis).Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae.Notably,we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway,DNA repair,and apoptosis,which displayed signs of rapid evolution.In addition,we observed an expansion of the major histocompatibility complex class II(MHC-II)region and a higher copy number of the HLA-DQB2 gene in horseshoe bats compared to other chiropteran species.Based on whole-genome resequencing and population genomic analyses,we identified multiple candidate loci(e.g.,GLI3)associated with variations in echolocation call frequency across R.affinis subspecies.This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research. 展开更多
关键词 Reference-quality genome Comparative genomics Population genomics Positive selection Bats
下载PDF
Rice-wheat comparative genomics:Gains and gaps
2
作者 Akila Wijerathna-Yapa Ruchi Bishnoi +11 位作者 Buddhini Ranawaka Manu Maya Magar Hafeez Ur Rehman Swati G.Bharad Michal T.Lorenc Vinita Ramtekey Sasha Gohar Charu Lata Md.Harun-Or-Rashid Maryam Razzaq Muhammad Sajjad Bhoja R.Basnet 《The Crop Journal》 SCIE CSCD 2024年第3期656-669,共14页
Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultiv... Rice and wheat provide nearly 40%of human calorie and protein requirements.They share a common ancestor and belong to the Poaceae(grass)family.Characterizing their genetic homology is crucial for developing new cultivars with enhanced traits.Several wheat genes and gene families have been characterized based on their rice orthologs.Rice–wheat orthology can identify genetic regions that regulate similar traits in both crops.Rice–wheat comparative genomics can identify candidate wheat genes in a genomic region identified by association or QTL mapping,deduce their putative functions and biochemical pathways,and develop molecular markers for marker-assisted breeding.A knowledge of gene homology facilitates the transfer between crops of genes or genomic regions associated with desirable traits by genetic engineering,gene editing,or wide crossing. 展开更多
关键词 Comparative genomics ORTHOLOGS GENES SYNTENY Genetic engineering Molecular breeding
下载PDF
Conservation genomics provides insights into genetic resilience and adaptation of the endangered Chinese hazelnut, Corylus chinensis
3
作者 Zhen Yang Lisong Liang +3 位作者 Weibo Xiang Lujun Wang Qinghua Ma Zhaoshan Wang 《Plant Diversity》 SCIE CAS CSCD 2024年第3期294-308,共15页
Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,... Global climate change has increased concerns regarding biodiversity loss.However,many key conservation issues still required further research,including demographic history,deleterious mutation load,adaptive evolution,and putative introgression.Here we generated the first chromosome-level genome of the endangered Chinese hazelnut,Corylus chinensis,and compared the genomic signatures with its sympatric widespread C.kwechowensis-C yunnanensis complex.We found large genome rearrangements across all Corylus species and identified species-specific expanded gene families that may be involved in adaptation.Population genomics revealed that both C.chinensis and the C.kwechowensis-C.yunnanensis complex had diverged into two genetic lineages,forming a consistent pattern of southwestern-northern differentiation.Population size of the narrow southwestern lineages of both species have decreased continuously since the late Miocene,whereas the widespread northern lineages have remained stable(C.chinensis) or have even recovered from population bottlenecks(C.kwechowensis-C.yunnanensis complex) during the Quaternary.Compared with C.kwechowensis-C. yunnanensis complex,C.chinensis showed significantly lower genomic diversity and higher inbreeding level.However,C.chinensis carried significantly fewer deleterious mutations than C.kwechowensis-C. yunnanensis complex,as more effective purging selection reduced the accumulation of homozygous variants.We also detected signals of positive selection and adaptive introgression in different lineages,which facilitated the accumulation of favorable variants and formation of local adaptation.Hence,both types of selection and exogenous introgression could have mitigated inbreeding and facilitated survival and persistence of C.chinensis.Overall,our study provides critical insights into lineage differentiation,local adaptation,and the potential for future recovery of endangered trees. 展开更多
关键词 Conservation genomics Demographic history INBREEDING Genetic load Runs of homozygosity Local adaptation
下载PDF
Metabologenomics and network pharmacology to understand the molecular mechanism of cancer research
4
作者 Yusuf Tutar 《World Journal of Clinical Cases》 SCIE 2024年第3期474-478,共5页
In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cas... In this editorial I comment on the article“Network pharmacological and molecular docking study of the effect of Liu-Wei-Bu-Qi capsule on lung cancer”published in the recent issue of the World Journal of Clinical Cases 2023 November 6;11(31):7593-7609.Almost all living forms are able to manufacture particular chemicals-metabolites that enable them to differentiate themselves from one another and to overcome the unique obstacles they encounter in their natural habitats.Numerous methods for chemical warfare,communication,nutrition acquisition,and stress prevention are made possible by these specialized metabolites.Metabolomics is a popular technique for collecting direct mea-surements of metabolic activity from many biological systems.However,con-fusing metabolite identification is a typical issue,and biochemical interpretation is frequently constrained by imprecise and erroneous genome-based estimates of enzyme activity.Metabolite annotation and gene integration uses a biochemical reaction network to obtain a metabolite-gene association so called metabologe-nomics.This network uses an approach that emphasizes metabolite-gene consensus via biochemical processes.Combining metabolomics and genomics data is beneficial.Furthermore,computer networking proposes that using meta-bolomics data may improve annotations in sequenced species and provide testable hypotheses for specific biochemical processes.CONCLUSION The genome and metabolites of biological organisms are not fully characterized with current technologies.However,increasing high-throughput metabolomics and genomics data provide promising generation of paired data sets to understand the molecular mechanism of biochemical processes as well as determining targets for pharmaceutical drug design.Contemporary network infrastructures to integrate omics analysis can provide molecular mechanism of biochemical pathways.Furthermore,clinical data may be integrated to gene expression–metabolite expression by system genetics approach.Calculating pair-wise correlations and weighted correlation network analysis provide the basis of this integration[11-13].The occurrence of strong correlations between classified metabolites and co-expression transcripts implies either various roles of metabolites or linkages between metabolic pathways and the immune system. 展开更多
关键词 Network pharmacology Metabologenomics GENOME PATHWAYS CANCER
下载PDF
Exploring the Unknown: The Application and Prospects of Artificial Intelligence in Genomics and Bioinformatics
5
作者 Qigang Feng Jie Li Qing Zhang 《Health》 2024年第9期837-848,共12页
This review comprehensively explores the core application of artificial intelligence (AI) in the fields of genomics and bioinformatics, and deeply analyzes how it leads the innovative progress of science. In the cutti... This review comprehensively explores the core application of artificial intelligence (AI) in the fields of genomics and bioinformatics, and deeply analyzes how it leads the innovative progress of science. In the cutting-edge fields of genomics and bioinformatics, the application of AI is propelling a deeper understanding of complex genetic mechanisms and the development of innovative therapeutic approaches. The precision of AI in genomic sequence analysis, coupled with breakthroughs in precise gene editing, such as AI-designed gene editors, significantly enhances our comprehension of gene functions and disease associations . Moreover, AI’s capabilities in disease prediction, assessing individual disease risks through genomic data analysis, provide robust support for personalized medicine. AI applications extend beyond gene identification, gene expression pattern prediction, and genomic structural variant analysis, encompassing key areas such as epigenetics, multi-omics data integration, genetic disease diagnosis, evolutionary genomics, and non-coding RNA function prediction. Despite challenges including data privacy, algorithm transparency, and bioethical issues, the future of AI is expected to continue revolutionizing genomics and bioinformatics, ushering in a new era of personalized medicine and precision treatments. 展开更多
关键词 AI genomics Disease Prediction Gene Editing Multi-Omics Data Fusion
下载PDF
Plastid phylogenomics and species discrimination in the“Chinese”clade of Roscoea(Zingiberaceae)
6
作者 Hai-Su Hu Jiu-Yang Mao +3 位作者 Xue Wang Yu-Ze Liang Bei Jiang De-Quan Zhang 《Plant Diversity》 SCIE CAS CSCD 2023年第5期523-534,共12页
Roscoea is an alpine or subalpine genus from the pan-tropical family Zingiberaceae,which consists of two disjunct groups in geography,namely the"Chinese"clade and the"Himalayan"clade.Despite extens... Roscoea is an alpine or subalpine genus from the pan-tropical family Zingiberaceae,which consists of two disjunct groups in geography,namely the"Chinese"clade and the"Himalayan"clade.Despite extensive research on the genus,Roscoea species remain poorly defined and relationships between these species are not well resolved.In this study,we used plastid genomes of nine species and one variety to resolve phylogenetic relationships within the"Chinese"clade of Roscoea and as DNA super barcodes for species discrimination.We found that Roscoea plastid genomes ranged in length from 163,063 to 163,796 bp,and encoded 113 genes,including 79 protein-coding genes,30 tRNA genes,four rRNA genes.In addition,expansion and contraction of the IR regions showed obvious infraspecifc conservatism and interspecific differentiation.Plastid phylogenomics revealed that species belonging to the"Chinese"clade of Roscoea can be divided into four distinct subclades.Furthermore,our analysis supported the independence of R.cautleoides var.pubescens,the recovery of Roscoea pubescens Z.Y.Zhu,and a close relationship between R.humeana and R.cautloides.When we used the plastid genome as a super barcode,we found that it possessed strong discriminatory power(90%)with high support values.Intergenic regions provided similar resolution,which was much better than that of protein-coding regions,hypervariable regions,and DNA universal barcodes.However,plastid genomes could not completely resolve Roscoea phylogeny or definitively discriminate species.These limitations are likely related to the complex history of Roscoea speciation,poorly defined species within the genus,and the maternal inheritance of plastid genomes. 展开更多
关键词 Medicinal plant Chloroplast genome Molecular phylogeny DNA barcoding DNA sequencing Species identification
下载PDF
Comparative genomics of widespread and narrow-range white-bellied rats in the Niviventer niviventer species complex sheds light on invasive rodent success
7
作者 Xin-Lai Wu Dan-Ping Mu +10 位作者 Qi-Sen Yang Yu Zhang Yu-Chun Li Anderson Feijó Ji-Long Cheng Zhi-Xin Wen Liang Lu Lin Xia Zhi-Jun Zhou Yan-Hua Qu De-Yan Ge 《Zoological Research》 SCIE CSCD 2023年第6期1052-1063,共12页
Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation,thus enabling range expansion.In contrast,narrow-range species are confined ... Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation,thus enabling range expansion.In contrast,narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions,thus limiting their ability to expand into novel environments.However,the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood.The Niviventer niviventer species complex(NNSC),consisting of highly abundant wild rats in Southeast Asia and China,offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related.In the present study,we combined ecological niche modeling with phylogenetic analysis,which suggested that sister species cannot be both widespread and dominant within the same geographical region.Moreover,by assessing heterozygosity,linkage disequilibrium decay,and Tajima's D analysis,we found that widespread species exhibited higher genetic diversity than narrow-range species.In addition,by exploring the“genomic islands of speciation”,we identified 13 genes in highly divergent regions that were shared by the two widespread species,distinguishing them from their narrow-range counterparts.Functional annotation analysis indicated that these genes are involved in nervous system development and regulation.The adaptive evolution of these genes likely played an important role in the speciation of these widespread species. 展开更多
关键词 Niviventer niviventer species complex Widespread species Narrow-range species Speciation Genomic islands of differentiation PHYLOgenomics
下载PDF
Research progress in genomics associated with prognosis of upper tract urothelial carcinoma
8
作者 LIU You-sheng WANG Fei 《Journal of Hainan Medical University》 CAS 2023年第22期69-74,共6页
Upper tract urothelial carcinoma and bladder urothelial carcinoma both belong to urothelial carcinoma,which is a malignant tumor occurring in the renal pelvis and ureteral urothelium.The incidence rate of UTUC is high... Upper tract urothelial carcinoma and bladder urothelial carcinoma both belong to urothelial carcinoma,which is a malignant tumor occurring in the renal pelvis and ureteral urothelium.The incidence rate of UTUC is higher among Asians and it shows various pathogenic factors.Patients of UTUC have a short lifespan,and most of them have shown invasive malignant tumors at the time of initial diagnosis.The treatment of most UTUC patients is limited to surgical resection,radiotherapy and chemotherapy in clinical.Due to its rarity,the studies on targeted therapy are rare.With the development of the targeted therapy and immunotherapy,genomics exploration that affects the prognosis of UTUC becomes particularly important.In this paper,we intend to review the differential expression,clinical significance and some special types of UTUC genomes through the UTUC genome. 展开更多
关键词 Upper tract urothelial carcinoma genomics PROGNOSTIC
下载PDF
Identification of candidate genes for early-maturity traits by combining BSA-seq and QTL mapping in upland cotton(Gossypium hirsutum L.) 被引量:1
9
作者 Liang Ma Tingli Hu +7 位作者 Meng Kang Xiaokang Fu Pengyun Chen Fei Wei Hongliang Jian Xiaoyan Lü Meng Zhang Yonglin Yang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3472-3486,共15页
Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the pr... Cotton breeding for the development of early-maturing varieties is an effective way to improve multiple cropping indexes and alleviate the conflict between grains and cotton in the cultivated fields in China.In the present study,we aimed to identify upland cotton quantitative trait loci(QTLs)and candidate genes related to early-maturity traits,including whole growth period(WGP),flowering timing(FT),node of the first fruiting branch(NFFB),height of the node of the first fruiting branch(HNFFB),and plant height(PH).An early-maturing variety,CCRI50,and a latematuring variety,Guoxinmian 11,were crossed to obtain biparental populations.These populations were used to map QTLs for the early-maturity traits for two years(2020 and 2021).With BSA-seq analysis based on the data of population 2020,the candidate regions related to early maturity were found to be located on chromosome D03.We then developed 22 polymorphic insertions or deletions(InDel)markers to further narrow down the candidate regions,resulting in the detection of five and four QTLs in the 2020 and 2021 populations,respectively.According to the results of QTL mapping,two candidate regions(InDel_G286-InDel_G144 and InDel_G24-InDel_G43)were detected.In these regions,three genes(GH_D03G0451,GH_D03G0649,and GH_D03G1180)have nonsynonymous mutations in their exons and one gene(GH_D03G0450)has SNP variations in the upstream sequence between CCRI50 and Guoxinmian 11.These four genes also showed dominant expression in the floral organs.The expression levels of GH_D03G0451,GH_D03G0649 and GH_D03G1180 were significantly higher in CCRI50 than in Guoxinmian 11 during the bud differentiation stages,while GH_D03G0450 showed the opposite trend.Further functional verification of GH_D03G0451 indicated that the GH_D03G0451-silenced plants showed a delay in the flowering time.The results suggest that these are the candidate genes for cotton early maturity,and they may be used for breeding early-maturity cotton varieties. 展开更多
关键词 cotton genomics early-maturity traits BSA-seq QTL mapping molecular breeding
下载PDF
Biological factors driving colorectal cancer metastasis 被引量:2
10
作者 Shuai-Xing An Zhao-Jin Yu +2 位作者 Chen Fu Min-Jie Wei Long-Hai Shen 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第2期259-272,共14页
Approximately 20%of colorectal cancer(CRC)patients present with metastasis at diagnosis.Among Stage I-III CRC patients who undergo surgical resection,18%typically suffer from distal metastasis within the first three y... Approximately 20%of colorectal cancer(CRC)patients present with metastasis at diagnosis.Among Stage I-III CRC patients who undergo surgical resection,18%typically suffer from distal metastasis within the first three years following initial treatment.The median survival duration after the diagnosis of metastatic CRC(mCRC)is only 9 mo.mCRC is traditionally considered to be an advanced stage malignancy or is thought to be caused by incomplete resection of tumor tissue,allowing cancer cells to spread from primary to distant organs;however,increa-sing evidence suggests that the mCRC process can begin early in tumor development.CRC patients present with high heterogeneity and diverse cancer phenotypes that are classified on the basis of molecular and morphological alterations.Different genomic and nongenomic events can induce subclone diversity,which leads to cancer and metastasis.Throughout the course of mCRC,metastatic cascades are associated with invasive cancer cell migration through the circulatory system,extravasation,distal seeding,dormancy,and reactivation,with each step requiring specific molecular functions.However,cancer cells presenting neoantigens can be recognized and eliminated by the immune system.In this review,we explain the biological factors that drive CRC metastasis,namely,genomic instability,epigenetic instability,the metastatic cascade,the cancer-immunity cycle,and external lifestyle factors.Despite remarkable progress in CRC research,the role of molecular classification in therapeutic intervention remains unclear.This review shows the driving factors of mCRC which may help in identifying potential candidate biomarkers that can improve the diagnosis and early detection of mCRC cases. 展开更多
关键词 CANCER Metastasis cascade Cancer immunity Genomic variation Epigenetic instability Lifestyle factor
下载PDF
Conservation genomic investigation of an endangered conifer,Thuja sutchuenensis,reveals low genetic diversity but also low genetic load 被引量:1
11
作者 Tongzhou Tao Richard IMilne +4 位作者 Jialiang Li Heng Yang Shiyang Wang Sihan Chen Kangshan Mao 《Plant Diversity》 SCIE CAS CSCD 2024年第1期78-90,共13页
Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the w... Endangered species generally have small populations with low genetic diversity and a high genetic load.Thuja sutchuenensis is an endangered conifer endemic to southwestern China.It was once considered extinct in the wild,but in 1999 was rediscovered.However,little is known about its genetic load.We collected 67 individuals from five wild,isolated T.sutchuenensis populations,and used 636,151 SNPs to analyze the level of genetic diversity and genetic load in T.sutchuenensis to delineate the conservation units of T.sutchuenensis,based on whole transcriptome sequencing data,as well as target capture sequencing data.We found that populations of T.sutchuenensis could be divided into three groups.These groups had low levels genetic diversity and were moderately genetically differentiated.Our findings also indicate that T.sutchuenensis suffered two severe bottlenecks around the Last Glaciation Period and Last Glacial Maximum.Among Thuja species,T.sutchuenensis presented the lowest genetic load and hence might have purged deleterious mutations efficiently through purifying selection.However,distribution of fitness effects analysis indicated a high extinction risk for T.sutchuenensis.Multiple lines of evidence identified three management units for T.sutchuenensis.Although T.sutchuenensis possesses a low genetic load,low genetic diversity,suboptimal fitness,and anthropogenic pressures all present an extinction risk for this rare conifer.This might also hold true for many endangered plant species in the mountains all over the world. 展开更多
关键词 Sichuan Arborvitae Genetic load Deleterious mutations Demographic history Conservation genomics
下载PDF
The evolution of cancer genomic medicine in Japan and the role of the National Cancer Center Japan 被引量:1
12
作者 Teruhiko Yoshida Yasushi Yatabe +6 位作者 Ken Kato Genichiro Ishii Akinobu Hamada Hiroyuki Mano Kuniko Sunami Noboru Yamamoto Takashi Kohno 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第1期29-44,共16页
The journey to implement cancer genomic medicine(CGM)in oncology practice began in the 1980s,which is considered the dawn of genetic and genomic cancer research.At the time,a variety of activating oncogenic alteration... The journey to implement cancer genomic medicine(CGM)in oncology practice began in the 1980s,which is considered the dawn of genetic and genomic cancer research.At the time,a variety of activating oncogenic alterations and their functional significance were unveiled in cancer cells,which led to the development of molecular targeted therapies in the 2000s and beyond.Although CGM is still a relatively new discipline and it is difficult to predict to what extent CGM will benefit the diverse pool of cancer patients,the National Cancer Center(NCC)of Japan has already contributed considerably to CGM advancement for the conquest of cancer.Looking back at these past achievements of the NCC,we predict that the future of CGM will involve the following:1)A biobank of paired cancerous and non-cancerous tissues and cells from various cancer types and stages will be developed.The quantity and quality of these samples will be compatible with omics analyses.All biobank samples will be linked to longitudinal clinical information.2)New technologies,such as whole-genome sequencing and artificial intelligence,will be introduced and new bioresources for functional and pharmacologic analyses(e.g.,a patient-derived xenograft library)will be systematically deployed.3)Fast and bidirectional translational research(bench-to-bedside and bedside-to-bench)performed by basic researchers and clinical investigators,preferably working alongside each other at the same institution,will be implemented;4)Close collaborations between academia,industry,regulatory bodies,and funding agencies will be established.5)There will be an investment in the other branch of CGM,personalized preventive medicine,based on the individual's genetic predisposition to cancer. 展开更多
关键词 Cancer genomic medicine BIOBANK patient-derived xenograft multi-gene panel test whole genome sequencing
下载PDF
Rice Heat Tolerance Breeding: A Comprehensive Review and Forward Gaze 被引量:1
13
作者 Ravindran Lalithambika VISAKH Sreekumar ANAND +4 位作者 Sukumaran Nair ARYA Behera SASMITA Uday Chand JHA Rameswar Prasad SAH Radha BEENA 《Rice science》 SCIE CSCD 2024年第4期375-400,I0022,共27页
The yield potential of rice is seriously affected by heat stress due to climate change. Since rice is a staple food globally, it is imperative to develop heat-resistant rice varieties. Thus, a thorough understanding o... The yield potential of rice is seriously affected by heat stress due to climate change. Since rice is a staple food globally, it is imperative to develop heat-resistant rice varieties. Thus, a thorough understanding of the complex molecular mechanisms underlying heat tolerance and the impact of high temperatures on various critical stages of the crop is needed. Adoption of both conventional and innovative breeding strategies offers a long-term advantage over other methods, such as agronomic practices, to counter heat stress. In this review, we summarize the effects of heat stress, regulatory pathways for heat tolerance, phenotyping strategies, and various breeding methods available for developing heat-tolerant rice. We offer perspectives and knowledge to guide future research endeavors aimed at enhancing the ability of rice to withstand heat stress and ultimately benefit humanity. 展开更多
关键词 genetic mechanism high-temperature stress molecular breeding genomics selection
下载PDF
Construction and validation of somatic mutation-derived long noncoding RNAs signatures of genomic instability to predict prognosis of hepatocellular carcinoma 被引量:2
14
作者 Bo-Tao Duan Xue-Kai Zhao +4 位作者 Yang-Yang Cui De-Zheng Liu Lin Wang Lei Zhou Xing-Yuan Zhang 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第3期842-859,共18页
BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify geno... BACKGROUND Long non-coding RNAs(LncRNAs)have been found to be a potential prognostic factor for cancers,including hepatocellular carcinoma(HCC).Some LncRNAs have been confirmed as potential indicators to quantify genomic instability(GI).Nevertheless,GI-LncRNAs remain largely unexplored.This study established a GI-derived LncRNA signature(GILncSig)that can predict the prognosis of HCC patients.AIM To establish a GILncSig that can predict the prognosis of HCC patients.METHODS Identification of GI-LncRNAs was conducted by combining LncRNA expression and somatic mutation profiles.The GI-LncRNAs were then analyzed for functional enrichment.The GILncSig was established in the training set by Cox regression analysis,and its predictive ability was verified in the testing set and TCGA set.In addition,we explored the effects of the GILncSig and TP53 on prognosis.RESULTS A total of 88 GI-LncRNAs were found,and functional enrichment analysis showed that their functions were mainly involved in small molecule metabolism and GI.The GILncSig was constructed by 5 LncRNAs(miR210HG,AC016735.1,AC116351.1,AC010643.1,LUCAT1).In the training set,the prognosis of high-risk patients was significantly worse than that of low-risk patients,and similar results were verified in the testing set and TCGA set.Multivariate Cox regression analysis and stratified analysis confirmed that the GILncSig could be used as an independent prognostic factor.Receiver operating characteristic curve analysis of the GILncSig showed that the area under the curve(0.773)was higher than the two LncRNA signatures published recently.Furthermore,the GILncSig may have a better predictive performance than TP53 mutation status alone.CONCLUSION We established a GILncSig that can predict the prognosis of HCC patients,which will help to guide prognostic evaluation and treatment decisions. 展开更多
关键词 Genomic instability Long noncoding RNA Hepatocellular carcinoma PROGNOSIS Diagnosis
下载PDF
Genome-edited rabbits:Unleashing the potential of a promising experimental animal model across diverse diseases 被引量:1
15
作者 Yang Han Jiale Zhou +3 位作者 Renquan Zhang Yuru Liang Liangxue Lai Zhanjun Li 《Zoological Research》 SCIE CSCD 2024年第2期253-262,共10页
Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The fie... Animal models are extensively used in all aspects of biomedical research,with substantial contributions to our understanding of diseases,the development of pharmaceuticals,and the exploration of gene functions.The field of genome modification in rabbits has progressed slowly.However,recent advancements,particularly in CRISPR/Cas9-related technologies,have catalyzed the successful development of various genome-edited rabbit models to mimic diverse diseases,including cardiovascular disorders,immunodeficiencies,agingrelated ailments,neurological diseases,and ophthalmic pathologies.These models hold great promise in advancing biomedical research due to their closer physiological and biochemical resemblance to humans compared to mice.This review aims to summarize the novel gene-editing approaches currently available for rabbits and present the applications and prospects of such models in biomedicine,underscoring their impact and future potential in translational medicine. 展开更多
关键词 Genome editing Animal model RABBIT CRISPR/Cas9 Genetic diseases
下载PDF
Enhancing cotton resilience to challenging climates through genetic modifications 被引量:1
16
作者 AHMED Ali Ijaz KHAN Azeem Iqbal +4 位作者 NEGM Mohamed A.M. IQBAL Rida AZHAR Muhammad Tehseen KHAN Sultan Habibullah RANA Iqrar Ahmad 《Journal of Cotton Research》 CAS 2024年第2期196-206,共11页
Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,an... Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,and weeds,as well as abiotic stresses including drought,salinity,heat,and cold.Traditional breeding methods have been used to breed climate resilient cotton,but it requires a considerable amount of time to enhance crop tolerance to insect pests and changing climatic conditions.A promising strategy for improving tolerance against these stresses is genetic engineering.This review article discusses the role of genetic engineering in cotton improvement.The essential concepts and techniques include genome editing via clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(CRISPR-Cas9),overexpression of target genes,downregulation using RNA interference(RNAi),and virus-induced gene silencing(VIGS).Notably,the Agrobacterium-mediated transformation has made significant contributions to using these techniques for obtaining stable transgenic plants. 展开更多
关键词 COTTON Genome editing DROUGHT SALINITY Heat
下载PDF
The chromosome-level genome of double-petal phenotype jasmine provides insights into the biosynthesis of floral scent 被引量:1
17
作者 Xiangyu Qi Huadi Wang +7 位作者 Shuyun Liu Shuangshuang Chen Jing Feng Huijie Chen Ziyi Qin Quanming Chen Ikram Blilou Yanming Deng 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期259-272,共14页
Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study... Jasmine(Jasminum sambac Aiton)is a well-known cultivated plant species for its fragrant flowers used in the perfume industry and cosmetics.However,the genetic basis of its floral scent is largely unknown.In this study,using PacBio,Illumina,10×Genomics and highthroughput chromosome conformation capture(Hi-C)sequencing technologies,a high-quality chromosome-level reference genome for J.sambac was obtained,exploiting a double-petal phenotype cultivar‘Shuangbanmoli’(JSSB).The results showed that the final assembled genome of JSSB is 580.33 Mb in size(contig N50=1.05 Mb;scaffold N50=45.07 Mb)with a total of 39618 predicted protein-coding genes.Our analyses revealed that the JSSB genome has undergone an ancient whole-genome duplication(WGD)event at 91.68 million years ago(Mya).It was estimated that J.sambac diverged from the lineage leading to Olea europaea and Osmanthus fragrans about 28.8 Mya.On the basis of a combination of genomic,transcriptomic and metabolomic analyses,a range of floral scent volatiles and genes were identified involved in the benzenoid/phenylpropanoid and terpenoid biosynthesis pathways.The results provide new insights into the molecular mechanism of its fragrance biosynthesis in jasmine. 展开更多
关键词 Jasminum sambac Aiton OLEACEAE Genome evolution Floral scent Terpene synthase
下载PDF
Identification of SSR markers linked to the abscission of cotton boll traits and mining germplasm in Cotton 被引量:1
18
作者 SHUI Guangling LIN Hairong +9 位作者 MA Xiaomei ZHU Bo HAN Peng AINI Nurimanguli GUO Chunping WU Yuanlong PAN Zhenyuan YOU Chunyuan SONG Guoli NIE Xinhui 《Journal of Cotton Research》 CAS 2024年第2期177-187,共11页
Background Cotton is an economically important crop.It is crucial to find an effective method to improve cotton yield,and one approach is to decrease the abscission of cotton bolls and buds.However,the lack of knowled... Background Cotton is an economically important crop.It is crucial to find an effective method to improve cotton yield,and one approach is to decrease the abscission of cotton bolls and buds.However,the lack of knowledge of the genetic and molecular mechanisms underlying cotton boll abscission traits has hindered genetic improvements.Results Pearson’s correlation analysis revealed a significant positive correlation between boll abscission rates 1(AR1)and boll abscission rates 2(AR2).A genome-wide association study was conducted on 145 loci that exhibited high polymorphism and were uniformly distributed across 26 chromosomes(pair).The study revealed 18,46,and 62 markers that were significantly associated with boll abscission,fiber quality,and yield traits(P<0.05),explaining 1.75%–7.13%,1.16%–9.58%,and 1.40%–5.44%of the phenotypic variation,respectively.Notably,the marker MON_SHIN-1584b was associated with the cotton boll abscission trait,whereas MON_CGR5732a was associated with cotton boll abscission and fiber quality traits.Thirteen of the marker loci identified in this study had been previously reported.Based on phenotypic effects,six typical cultivars with elite alleles related to cotton boll abscission,fiber quality,and yield traits were identified.These cultivars hold great promise for widespread utilization in breeding programs.Conclusions These results lay the foundation for understanding the molecular regulatory mechanism of cotton boll abscission and provide data for the future improvement of cotton breeding. 展开更多
关键词 SSR Genome wide association studies ABSCISSION Favorable alleles COTTON Genetic improvement
下载PDF
Identification of novel mammalian viruses in tree shrews(Tupaia belangeri chinensis) 被引量:1
19
作者 Hong Zhou Ren-Rong Tian +9 位作者 Xiu-Rong Wang Jin-Xuan Yang Yun-Xiao Wang Ming-Liang Zhao Xu-Dong Zhang Yu-Hua Ma Long-Bao Lv Edward CHolmes Yong-Tang Zheng Wei-Feng Shi 《Zoological Research》 SCIE CSCD 2024年第2期429-438,共10页
The Chinese tree shrew(Tupaia belangeri chinensis),a member of the mammalian order Scandentia,exhibits considerable similarities with primates,including humans,in aspects of its nervous,immune,and metabolic systems.Th... The Chinese tree shrew(Tupaia belangeri chinensis),a member of the mammalian order Scandentia,exhibits considerable similarities with primates,including humans,in aspects of its nervous,immune,and metabolic systems.These similarities have established the tree shrew as a promising experimental model for biomedical research on cancer,infectious diseases,metabolic disorders,and mental health conditions.Herein,we used metatranscriptomic sequencing to analyze plasma,as well as oral and anal swab samples,from 105 healthy asymptomatic tree shrews to identify the presence of potential zoonotic viruses.In total,eight mammalian viruses with complete genomes were identified,belonging to six viral families,including Flaviviridae,Hepeviridae,Parvovirinae,Picornaviridae,Sedoreoviridae,and Spinareoviridae.Notably,the presence of rotavirus was recorded in tree shrews for the first time.Three viruses-hepacivirus 1,parvovirus,and picornavirus-exhibited low genetic similarity(<70%)with previously reported viruses at the whole-genome scale,indicating novelty.Conversely,three other viruses-hepacivirus 2,hepatovirus A and hepevirus-exhibited high similarity(>94%)to known viral strains.Phylogenetic analyses also revealed that the rotavirus and mammalian orthoreovirus identified in this study may be novel reassortants.These findings provide insights into the diverse viral spectrum present in captive Chinese tree shrews,highlighting the necessity for further research into their potential for crossspecies transmission. 展开更多
关键词 Tree shrew(Tupaia belangeri chinensis) Meta-transcriptomic sequencing Mammalian viruses Genomic analysis
下载PDF
RNA sequencing of exosomes secreted by fibroblast and Schwann cells elucidates mechanisms underlying peripheral nerve regeneration 被引量:1
20
作者 Xinyang Zhou Yehua Lv +8 位作者 Huimin Xie Yan Li Chang Liu Mengru Zheng Ronghua Wu Songlin Zhou Xiaosong Gu Jingjing Li Daguo Mi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1812-1821,共10页
Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported t... Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system. 展开更多
关键词 ceRNA network EXOSOMES fibroblast cells Gene Ontology(GO) Kyoto Encyclopedia of Genes and Genomes(KEGG) protein-protein interaction(PPI)networks RNA-seq Schwann cells
下载PDF
上一页 1 2 139 下一页 到第
使用帮助 返回顶部