Genotyping platforms,as critical supports for genomics,genetics,and molecular breeding,have been well implemented at national institutions/universities in developed countries and multinational seed companies that poss...Genotyping platforms,as critical supports for genomics,genetics,and molecular breeding,have been well implemented at national institutions/universities in developed countries and multinational seed companies that possess high-throughput,automatic,large-scale,and shared facilities.In this study,we integrated an improved genotyping by target sequencing(GBTS)system with capture-in-solution(liquid chip)technology to develop a multiple single-nucleotide polymorphism(mSNP)approach in which mSNPs can be captured from a single amplicon.From one 40K maize mSNP panel,we developed three types of markers(40K mSNPs,251K SNPs,and 690K haplotypes),and generated multiple panels with various marker densities(1K–40K mSNPs)by sequencing at different depths.Comparative genetic diversity analysis was performed with genic versus intergenic markers and di-allelic SNPs versus non-typical SNPs.Compared with the one-amplicon-one-SNP system,mSNPs and within-mSNP haplotypes are more powerful for genetic diversity detection,linkage disequilibrium decay analysis,and genome-wide association studies.The technologies,protocols,and application scenarios developed for maize in this study will serve as a model for the development of mSNP arrays and highly efficient GBTS systems in animals,plants,and microorganisms.展开更多
基金This research is supported by the National Key Research and Development Program of China(2016YFD0101803 and 2017YFD0101201)the Central Public-interest Scientific Institution Basal Research Fund(Y2020PT20)+4 种基金the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciences(CAAS)(CAAS-XTCX2016009)the Key Research Area and Development Program of Guangdong Province(2018B020202008)the Shijiazhuang Science and Technology Incubation Program(191540089A)the Hebei Innovation Capability Enhancement Project(19962911D)Research activities at CIMMYT were supported by the Bill and Melinda Gates Foundation and the CGIAR Research Program MAIZE.
文摘Genotyping platforms,as critical supports for genomics,genetics,and molecular breeding,have been well implemented at national institutions/universities in developed countries and multinational seed companies that possess high-throughput,automatic,large-scale,and shared facilities.In this study,we integrated an improved genotyping by target sequencing(GBTS)system with capture-in-solution(liquid chip)technology to develop a multiple single-nucleotide polymorphism(mSNP)approach in which mSNPs can be captured from a single amplicon.From one 40K maize mSNP panel,we developed three types of markers(40K mSNPs,251K SNPs,and 690K haplotypes),and generated multiple panels with various marker densities(1K–40K mSNPs)by sequencing at different depths.Comparative genetic diversity analysis was performed with genic versus intergenic markers and di-allelic SNPs versus non-typical SNPs.Compared with the one-amplicon-one-SNP system,mSNPs and within-mSNP haplotypes are more powerful for genetic diversity detection,linkage disequilibrium decay analysis,and genome-wide association studies.The technologies,protocols,and application scenarios developed for maize in this study will serve as a model for the development of mSNP arrays and highly efficient GBTS systems in animals,plants,and microorganisms.