This paper provides a comprehensive overview on coastal protection and hazard mitigation by mangroves.Previous stud-ies have made great strides to understand the mechanisms and influencing factors of mangroves’protec...This paper provides a comprehensive overview on coastal protection and hazard mitigation by mangroves.Previous stud-ies have made great strides to understand the mechanisms and influencing factors of mangroves’protection function,including wave energy dissipation,storm surge damping,tsunami mitigation,adjustment to sea level rise and wind speed reduction,which are sys-tematically summarized in this study.Moreover,the study analyzes the extensive physical models,based on indoor flume experi-ments and numerical models,that consider the interaction between mangroves and hydrodynamics,to help our understanding of mangrove-hydrodynamic interactions.Additionally,quantitative approaches for valuing coastal protection services provided by man-groves,including index-based and process-resolving approaches,are introduced in detail.Finally,we point out the limitations of previous studies,indicating that efforts are still required for obtaining more long-term field observations during extreme weather events,to create more real mangrove models for physical experiments,and to develop numerical models that consider the flexible properties of mangroves to better predict wave propagation in mangroves having complex morphology and structures.展开更多
On July 10,2004,Beijing was hit by the rainstorm that has not been seen for many years,which caused water accumulation in many places of the urban area,power supply interruption in many places,and traffic paralysis fo...On July 10,2004,Beijing was hit by the rainstorm that has not been seen for many years,which caused water accumulation in many places of the urban area,power supply interruption in many places,and traffic paralysis for nearly 5 h. On July 12,2004,the rainstorm in Shanghai lasted less than 1 h,but it caused 7 deaths,more than 20 injuries,extensive power outages and traffic paralysis. At the end of 2005,the continuous snowfall in Weihai City of Shandong Province for half a month caused direct economic losses of over 200 million yuan,and the continuous heavy snowfall had a serious impact on people’s lives. From July 17 to 23,2021,Henan Province suffered a rare extremely heavy rainstorm in history,with a direct economic loss of 120.6 billion yuan. Faced with such urban meteorological disasters and other types of urban disasters,combined with the current situation of disaster prevention and reduction in China,what will managers,decision-makers,and experts and scholars think about from them.展开更多
The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
Hong Kong has a high concentration of developments on hilly terrain in close proximity to man-made slopes and natural hillsides.Because of the high seasonal rainfall,these man-made slopes and natural hillsides would p...Hong Kong has a high concentration of developments on hilly terrain in close proximity to man-made slopes and natural hillsides.Because of the high seasonal rainfall,these man-made slopes and natural hillsides would pose a risk to the public as manifested by a death toll of 470 people due to landslides since the late 1940s.In 1977,the Government of the Hong Kong SAR embarked on a systematic programme,known as the Landslip Preventive Measure(LPM)Programme,to retroft substandard man-made slopes.From 1977 to 2010,about 4500 substandard government man-made slopes have been upgraded through engineering works.During the period,the Programme had evolved progressively in response to Government’s internal demand for continuous improvement and rising public expectation for slope safety.In 2010,the Government implemented the Landslip Prevention and Mitigation(LPMit)Programme to dovetail with the LPM Programme,with the focus on retroftting the remaining moderate-risk substandard man-made slopes and mitigating systematically the natural terrain landslide risk pursuant to the"react-to-known"hazard principle.This paper presents the evolution of the LPM and LPMit Programmes as well as the insight on landslide prevention and mitigation through engineering works.展开更多
Using summer(June-August)precipitation observation data in 10 representative stations of Shaoyang City during 1971-2021 and disaster data caused by summer rainstorm in nine counties(cities)and four districts of Shaoya...Using summer(June-August)precipitation observation data in 10 representative stations of Shaoyang City during 1971-2021 and disaster data caused by summer rainstorm in nine counties(cities)and four districts of Shaoyang during 1981-2021,statistical analysis on summer rainstorm and its caused disaster in Shaoyang was conducted,and spatial and temporal characteristics of summer rainstorm and spatial distribution rule of disaster were found out.The results showed that(1)the rainstorm disaster in Shaoyang City occurs almost every year and is highly seasonal.(2)Rainstorm disaster loss is the first of other meteorological disasters.(3)The summer rainstorm disaster has the characteristics of sudden and destructive.On this basis,the relative grades of rainstorm disaster risk degree and disaster loss degree were divided,and the risk assessment of rainstorm and flood disaster in Shaoyang City was made,and the disaster prevention and mitigation measures and countermeasures were put forward.The research could provide scientific decision basis for party and government departments guiding flood fighting and disaster relief.展开更多
Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rock...Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.展开更多
The Kaapvaal Craton in South Africa hosts one of the largest gold placer deposits in the world. Mining in the Witwatersrand Basin here has been the source of about one third to one half of the gold ever produced in th...The Kaapvaal Craton in South Africa hosts one of the largest gold placer deposits in the world. Mining in the Witwatersrand Basin here has been the source of about one third to one half of the gold ever produced in the world. Gold was discovered in the Johannesburg area in 1886 and after 120 years of continuous operation, mining is currently approaching depths of 4 000 m. In spite of the challenges and risks that the industry has had to deal with including rock temperature, ventilation and water, one of the most feared hazards in the basin has been the threat from the ongoing occurrence of seismicity and rockbursts. The problem first manifested itself by way of the occurrence of tremors roughly twenty years after the commencement of mining operations. This paper traces the history of the approach to rockbursts and seismicity during the 120 year history of mining in the basin. It portrays a picture of the mining seismicity in terms of monitoring phases, mechanisms and mitigation strategies. The work of research organizations over the years is highlighted with a brief mention of current regulation strategies on the part of the mining inspectorate.展开更多
"The Belt and Road Initiative"is major decision proposed by the CPC Central Committee with comrade Xi Jinping as the core co-ordinating the domestic and international overall situations,and concerns peaceful..."The Belt and Road Initiative"is major decision proposed by the CPC Central Committee with comrade Xi Jinping as the core co-ordinating the domestic and international overall situations,and concerns peaceful rise of China and extension of the strategic opportunity period of modernization construction.It needs multi-faceted safeguards to successfully impel"the Belt and Road Initiative",in which disaster risk identification and its effective prevention and control are indispensable links.By integrating geogeographic and atmospheric environmental factors,countries along"the Belt and Road Initiative"belong to frequent occurrence region of major natural disasters.It restricts not only the economic and social development of relevant countries but also implementation effect of"the Belt and Road Initiative"construction,and is also related to the success or failure of Chinese enterprises going out to a certain extent.It should enhance disaster prevention and mitigation and ensure safety of major infrastructure construction related to interconnection of"the Belt and Road Initiative"by disaster identification and prevention,which is the key of successfully impelling strategy implementation and major need for guaranteeing the people s livelihood of the countries along the line.The work of disaster prevention and mitigation in the countries along the line is generally weak,and it is urgent to raise the level of disaster prevention as a whole by promoting the disaster prevention and mitigation cooperation in the"the Belt and Road Initiative"area;improve the coverage and level of disaster risk insurance;enhance construction in monitoring and early warning capability of natural disaster;strengthen structural adjustment of economy,industry and land use responding to climate change risks;establish a comprehensive disaster reduction forum of"the Belt and Road Initiative",and contain relevant content in"the Belt and Road Initiative"series of high-end forum topics.展开更多
The research aimed to prevent and reduce rainstorm disaster in the Jinji River of Yongfu County,Guilin City.Distribution of population,cultivated land and GDP in the Jinji River were analyzed,and the influence of hist...The research aimed to prevent and reduce rainstorm disaster in the Jinji River of Yongfu County,Guilin City.Distribution of population,cultivated land and GDP in the Jinji River were analyzed,and the influence of historical rainstorm process was studied.Moreover,high risk area of meteorological disasters and the region not suitable for constructing residential areas,development zones and projects were distinguished,and its influence on agriculture and forestry was analyzed.If it was necessary to build residential areas,development zones and projects or the human society has already been in the high-risk area of meteorological disasters and it was difficult to move,what engineering measures should be taken to prevent the occurrence of risks.The research could provide scientific basis for design standard of disaster prevention engineering,to prevent the occurrence of disaster risk.展开更多
With the development of economy,China has gradually begun to pay attention to the protection of the natural environment.Under the concept of"lucid waters and lush mountains are invaluable assets",importance ...With the development of economy,China has gradually begun to pay attention to the protection of the natural environment.Under the concept of"lucid waters and lush mountains are invaluable assets",importance has been attached to the development of forestry economy.The protection of forest resources and the prevention and control of disasters are important contents and necessary components in the construction of China's forestry ecological environment.Through the analysis and research on the types of forest disasters(forest fires,biological disasters,meteorological disasters,geological disasters,deforestation)and disaster-causing factors,some basic countermeasures were put forward with the aim to enhance the production capacity of forest resources,improve the ecological environment of forest resources and prevent forest resource disasters.展开更多
As an earthquake-prone country, China has made sustained efforts in the study of earthquakes and disaster mitigation during the past several decades, with China Seismological Bureau (CSB) as the backbone of these effo...As an earthquake-prone country, China has made sustained efforts in the study of earthquakes and disaster mitigation during the past several decades, with China Seismological Bureau (CSB) as the backbone of these efforts. Working towards this purpose, a series of key projects were implemented in the “Ninth Five-Year Plan” (1995-2000) to upgrade earthquake monitoring systems and to improve the supporting infrastructure, significant results in earthquake science were achieved. In the new century, we have worked out a blueprint for earthquake preparedness and disaster mitigation in the “Tenth Five-Year Plan”, which emphases 3 systems (i.e. Seismic Monitoring & Prediction, Seismic Hazards Prevention, Emergency Response), and 10 key projects in earthquake science and technology.展开更多
基金funded by the National Key R&D Program of China(No.2023YFC3007900)the Young Scientists Fund of the National Natural Science Foundation of China(No.42106204)+2 种基金the Jiangsu Basic Research Program(Natural Science Foundation)(No.BK20220082)the National Natural Science Foundation of China(No.52271271)the Major Science&Technology Projects of the Ministry of Water Resources(No.SKS-2022025).
文摘This paper provides a comprehensive overview on coastal protection and hazard mitigation by mangroves.Previous stud-ies have made great strides to understand the mechanisms and influencing factors of mangroves’protection function,including wave energy dissipation,storm surge damping,tsunami mitigation,adjustment to sea level rise and wind speed reduction,which are sys-tematically summarized in this study.Moreover,the study analyzes the extensive physical models,based on indoor flume experi-ments and numerical models,that consider the interaction between mangroves and hydrodynamics,to help our understanding of mangrove-hydrodynamic interactions.Additionally,quantitative approaches for valuing coastal protection services provided by man-groves,including index-based and process-resolving approaches,are introduced in detail.Finally,we point out the limitations of previous studies,indicating that efforts are still required for obtaining more long-term field observations during extreme weather events,to create more real mangrove models for physical experiments,and to develop numerical models that consider the flexible properties of mangroves to better predict wave propagation in mangroves having complex morphology and structures.
文摘On July 10,2004,Beijing was hit by the rainstorm that has not been seen for many years,which caused water accumulation in many places of the urban area,power supply interruption in many places,and traffic paralysis for nearly 5 h. On July 12,2004,the rainstorm in Shanghai lasted less than 1 h,but it caused 7 deaths,more than 20 injuries,extensive power outages and traffic paralysis. At the end of 2005,the continuous snowfall in Weihai City of Shandong Province for half a month caused direct economic losses of over 200 million yuan,and the continuous heavy snowfall had a serious impact on people’s lives. From July 17 to 23,2021,Henan Province suffered a rare extremely heavy rainstorm in history,with a direct economic loss of 120.6 billion yuan. Faced with such urban meteorological disasters and other types of urban disasters,combined with the current situation of disaster prevention and reduction in China,what will managers,decision-makers,and experts and scholars think about from them.
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
文摘Hong Kong has a high concentration of developments on hilly terrain in close proximity to man-made slopes and natural hillsides.Because of the high seasonal rainfall,these man-made slopes and natural hillsides would pose a risk to the public as manifested by a death toll of 470 people due to landslides since the late 1940s.In 1977,the Government of the Hong Kong SAR embarked on a systematic programme,known as the Landslip Preventive Measure(LPM)Programme,to retroft substandard man-made slopes.From 1977 to 2010,about 4500 substandard government man-made slopes have been upgraded through engineering works.During the period,the Programme had evolved progressively in response to Government’s internal demand for continuous improvement and rising public expectation for slope safety.In 2010,the Government implemented the Landslip Prevention and Mitigation(LPMit)Programme to dovetail with the LPM Programme,with the focus on retroftting the remaining moderate-risk substandard man-made slopes and mitigating systematically the natural terrain landslide risk pursuant to the"react-to-known"hazard principle.This paper presents the evolution of the LPM and LPMit Programmes as well as the insight on landslide prevention and mitigation through engineering works.
文摘Using summer(June-August)precipitation observation data in 10 representative stations of Shaoyang City during 1971-2021 and disaster data caused by summer rainstorm in nine counties(cities)and four districts of Shaoyang during 1981-2021,statistical analysis on summer rainstorm and its caused disaster in Shaoyang was conducted,and spatial and temporal characteristics of summer rainstorm and spatial distribution rule of disaster were found out.The results showed that(1)the rainstorm disaster in Shaoyang City occurs almost every year and is highly seasonal.(2)Rainstorm disaster loss is the first of other meteorological disasters.(3)The summer rainstorm disaster has the characteristics of sudden and destructive.On this basis,the relative grades of rainstorm disaster risk degree and disaster loss degree were divided,and the risk assessment of rainstorm and flood disaster in Shaoyang City was made,and the disaster prevention and mitigation measures and countermeasures were put forward.The research could provide scientific decision basis for party and government departments guiding flood fighting and disaster relief.
基金This work was financially supported by National Natural Science Foundation of China(Grant Nos.U2244226,U2244227 and 42177172).
文摘Long-runout rockslides at high altitude could cause disaster chain in river basins and destroy towns and major infrasturctures.This paper firstly explores the initiation mechanism of high-altitude and long-runout rockslides.Two types of sliding-prone geostructure models,i.e.the fault control type in orogenic belt and the fold control type in platform area,are proposed.Then,large-scale experimental apparatus and associated numerical simulations are conducted to understanding the chain-style dynamics of rockslide-debris avalanche-debris flow.The results reveal the fragmentation effects,the rheological behaviors and the boundary layer effect of long-runout avalanche-debris flow.The dynamic character-istics of quasi-static-transition-inertia state and solid-liquid coupling in rapid movement of rockslide-debris avalanche-debris flow are investigated.Finally,the risk mitigation strategy of the non-structure and structure for resilient energy dissipation are illustrated for initiation,transition and deposition zones.The structural prevention and mitigation methods have been successfully applied to the high-altitude and long-runout rockslides in Zhouqu and Maoxian of the Wenchuan earthquake zone,as well as the other major geohazards in Qinghai-Tibet Plateau and its adjacent areas.
文摘The Kaapvaal Craton in South Africa hosts one of the largest gold placer deposits in the world. Mining in the Witwatersrand Basin here has been the source of about one third to one half of the gold ever produced in the world. Gold was discovered in the Johannesburg area in 1886 and after 120 years of continuous operation, mining is currently approaching depths of 4 000 m. In spite of the challenges and risks that the industry has had to deal with including rock temperature, ventilation and water, one of the most feared hazards in the basin has been the threat from the ongoing occurrence of seismicity and rockbursts. The problem first manifested itself by way of the occurrence of tremors roughly twenty years after the commencement of mining operations. This paper traces the history of the approach to rockbursts and seismicity during the 120 year history of mining in the basin. It portrays a picture of the mining seismicity in terms of monitoring phases, mechanisms and mitigation strategies. The work of research organizations over the years is highlighted with a brief mention of current regulation strategies on the part of the mining inspectorate.
基金Supported by China Postdoctoral Science Foundation(2019T120114,2019M650756)the National Natural Science Fund(41801064)the Central Asian Atmospheric Science Research Fund(CAAS201804)
文摘"The Belt and Road Initiative"is major decision proposed by the CPC Central Committee with comrade Xi Jinping as the core co-ordinating the domestic and international overall situations,and concerns peaceful rise of China and extension of the strategic opportunity period of modernization construction.It needs multi-faceted safeguards to successfully impel"the Belt and Road Initiative",in which disaster risk identification and its effective prevention and control are indispensable links.By integrating geogeographic and atmospheric environmental factors,countries along"the Belt and Road Initiative"belong to frequent occurrence region of major natural disasters.It restricts not only the economic and social development of relevant countries but also implementation effect of"the Belt and Road Initiative"construction,and is also related to the success or failure of Chinese enterprises going out to a certain extent.It should enhance disaster prevention and mitigation and ensure safety of major infrastructure construction related to interconnection of"the Belt and Road Initiative"by disaster identification and prevention,which is the key of successfully impelling strategy implementation and major need for guaranteeing the people s livelihood of the countries along the line.The work of disaster prevention and mitigation in the countries along the line is generally weak,and it is urgent to raise the level of disaster prevention as a whole by promoting the disaster prevention and mitigation cooperation in the"the Belt and Road Initiative"area;improve the coverage and level of disaster risk insurance;enhance construction in monitoring and early warning capability of natural disaster;strengthen structural adjustment of economy,industry and land use responding to climate change risks;establish a comprehensive disaster reduction forum of"the Belt and Road Initiative",and contain relevant content in"the Belt and Road Initiative"series of high-end forum topics.
基金Supported by Meteorological Scientific Research Project of Guangxi Meteorological Bureau(Guiqike2017Z06)Special Project for Forecasters of China Meteorological Administration(CMAYBY2020-096).
文摘The research aimed to prevent and reduce rainstorm disaster in the Jinji River of Yongfu County,Guilin City.Distribution of population,cultivated land and GDP in the Jinji River were analyzed,and the influence of historical rainstorm process was studied.Moreover,high risk area of meteorological disasters and the region not suitable for constructing residential areas,development zones and projects were distinguished,and its influence on agriculture and forestry was analyzed.If it was necessary to build residential areas,development zones and projects or the human society has already been in the high-risk area of meteorological disasters and it was difficult to move,what engineering measures should be taken to prevent the occurrence of risks.The research could provide scientific basis for design standard of disaster prevention engineering,to prevent the occurrence of disaster risk.
基金Supported by National Natural Science Foundation of China(41671283)。
文摘With the development of economy,China has gradually begun to pay attention to the protection of the natural environment.Under the concept of"lucid waters and lush mountains are invaluable assets",importance has been attached to the development of forestry economy.The protection of forest resources and the prevention and control of disasters are important contents and necessary components in the construction of China's forestry ecological environment.Through the analysis and research on the types of forest disasters(forest fires,biological disasters,meteorological disasters,geological disasters,deforestation)and disaster-causing factors,some basic countermeasures were put forward with the aim to enhance the production capacity of forest resources,improve the ecological environment of forest resources and prevent forest resource disasters.
文摘As an earthquake-prone country, China has made sustained efforts in the study of earthquakes and disaster mitigation during the past several decades, with China Seismological Bureau (CSB) as the backbone of these efforts. Working towards this purpose, a series of key projects were implemented in the “Ninth Five-Year Plan” (1995-2000) to upgrade earthquake monitoring systems and to improve the supporting infrastructure, significant results in earthquake science were achieved. In the new century, we have worked out a blueprint for earthquake preparedness and disaster mitigation in the “Tenth Five-Year Plan”, which emphases 3 systems (i.e. Seismic Monitoring & Prediction, Seismic Hazards Prevention, Emergency Response), and 10 key projects in earthquake science and technology.