The area to the southeast of the Western Desert of Egypt has been subjected to considerable development activities over the last few years. The development includes the cultivation of about 2260 km2 of the desert lan...The area to the southeast of the Western Desert of Egypt has been subjected to considerable development activities over the last few years. The development includes the cultivation of about 2260 km2 of the desert lands “the well-known Toshka Project”. The hydrogeological conditions of the area are subjected to detailed investigation based upon the construction of the water table maps, hydrologeologic cross-sections, pumping tests, aquifer geometry, and recharge-discharge relationship. The study revealed that the Quaternary and the Nubia sediments are the main water bearing layers in the area. The Quaternary aquifer is of limited potential and made of mixed sand with clay deposit ranges in thickness between 5 to 10 m. The Nubia aquifer is the oldest sedimentary formation and the main groundwater resources in the area. It is represented by multilayered of sand and silt exists generally under artesian conditions. It is composed of three water bearing horizons partially separated by two confining horizons and extends in thickness ranges between 70 and 230 meters. The thickness increases away from the high dam lake. The analysis of pumping tests of the aquifer indicated that its potentiality is increasing north of the High Dam Lake (HDL) whereas it decreases in the other direction. This is due to high hydraulic conductivity and aquifer thickness in the area northeast of Khor Toshka and at west of Garf Hussein. The hydraulic conductivity of the aquifer ranges between 12.73 and 0.9 m/day. The review of the changes in groundwater levels in the area showed that there is a drop in ranges between 1 and 14 meters in the last few years indicating that the extraction from the groundwater is much more higher that the replacement rate. Also, the analysis of the fluctuation of water levels of the HDL and the groundwater level indicated that the influence of water on groundwater level in the area is observed only at a distance less than 10 km from the lake shore line. Seepage from the HDL is estimated as 238.13 × 106 m3/year. The geo-environmental impacts of the development on the surface water and groundwater in the area are evaluated.展开更多
Distribution and enrichment of six elements (iron, zinc, copper, lead, cadmium and manganese) in surface bed sediments, collected from seventeen selected locations during pre-monsoon and postmonsoon periods, of the tr...Distribution and enrichment of six elements (iron, zinc, copper, lead, cadmium and manganese) in surface bed sediments, collected from seventeen selected locations during pre-monsoon and postmonsoon periods, of the tropical Chottanagpur plateau river Subarnarekha along with the ecological risks involved were investigated. Owing to the rich occurrence of mineral resources, the Subarnarekha river basin has a large scale presence of industrial and mining units especially in the Indian State of Jharkhand. An assessment, which involved examining distribution pattern of elements, comparative studies with sediment quality guidelines (SQGs) and geochemical background values and a sequential and integrated index analyses approach (containing contamination factor (CF), pollution load index (PLI), contamination degree (CD), enrichment factor (EF), geo-accumulation index (Igeo) and potential ecological risk index (PERI)), was followed to estimate enrichment and risks of elements in the bed sediments. Sediments collected from areas having abundance of population, industrial conglomerates and mining units recorded elevated element concentrations, which exceeded SQGs, and significantly higher values of CF, CD, PLI, EF, Igeo and PERI. Cadmium demonstrated surprising regularity in its enrichment;contributed most to the ecological risks;and high toxicity risks due to cadmium exceeded 64% of the sites. Moreover, chronic exposures of other elements would also lead to similar ecological risks. In addition to revealing potential ecological risks due to cadmium and other elements our investigation markedly highlighted anthropogenic control over sediment quality deterioration and some immediate sediment quality management strategies are needed to remediate and control river bed contamination.展开更多
文摘The area to the southeast of the Western Desert of Egypt has been subjected to considerable development activities over the last few years. The development includes the cultivation of about 2260 km2 of the desert lands “the well-known Toshka Project”. The hydrogeological conditions of the area are subjected to detailed investigation based upon the construction of the water table maps, hydrologeologic cross-sections, pumping tests, aquifer geometry, and recharge-discharge relationship. The study revealed that the Quaternary and the Nubia sediments are the main water bearing layers in the area. The Quaternary aquifer is of limited potential and made of mixed sand with clay deposit ranges in thickness between 5 to 10 m. The Nubia aquifer is the oldest sedimentary formation and the main groundwater resources in the area. It is represented by multilayered of sand and silt exists generally under artesian conditions. It is composed of three water bearing horizons partially separated by two confining horizons and extends in thickness ranges between 70 and 230 meters. The thickness increases away from the high dam lake. The analysis of pumping tests of the aquifer indicated that its potentiality is increasing north of the High Dam Lake (HDL) whereas it decreases in the other direction. This is due to high hydraulic conductivity and aquifer thickness in the area northeast of Khor Toshka and at west of Garf Hussein. The hydraulic conductivity of the aquifer ranges between 12.73 and 0.9 m/day. The review of the changes in groundwater levels in the area showed that there is a drop in ranges between 1 and 14 meters in the last few years indicating that the extraction from the groundwater is much more higher that the replacement rate. Also, the analysis of the fluctuation of water levels of the HDL and the groundwater level indicated that the influence of water on groundwater level in the area is observed only at a distance less than 10 km from the lake shore line. Seepage from the HDL is estimated as 238.13 × 106 m3/year. The geo-environmental impacts of the development on the surface water and groundwater in the area are evaluated.
文摘Distribution and enrichment of six elements (iron, zinc, copper, lead, cadmium and manganese) in surface bed sediments, collected from seventeen selected locations during pre-monsoon and postmonsoon periods, of the tropical Chottanagpur plateau river Subarnarekha along with the ecological risks involved were investigated. Owing to the rich occurrence of mineral resources, the Subarnarekha river basin has a large scale presence of industrial and mining units especially in the Indian State of Jharkhand. An assessment, which involved examining distribution pattern of elements, comparative studies with sediment quality guidelines (SQGs) and geochemical background values and a sequential and integrated index analyses approach (containing contamination factor (CF), pollution load index (PLI), contamination degree (CD), enrichment factor (EF), geo-accumulation index (Igeo) and potential ecological risk index (PERI)), was followed to estimate enrichment and risks of elements in the bed sediments. Sediments collected from areas having abundance of population, industrial conglomerates and mining units recorded elevated element concentrations, which exceeded SQGs, and significantly higher values of CF, CD, PLI, EF, Igeo and PERI. Cadmium demonstrated surprising regularity in its enrichment;contributed most to the ecological risks;and high toxicity risks due to cadmium exceeded 64% of the sites. Moreover, chronic exposures of other elements would also lead to similar ecological risks. In addition to revealing potential ecological risks due to cadmium and other elements our investigation markedly highlighted anthropogenic control over sediment quality deterioration and some immediate sediment quality management strategies are needed to remediate and control river bed contamination.