期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一种改进的基于Geo-tagged照片的热门旅游景点挖掘方法 被引量:2
1
作者 方伟欣 王新 《云南民族大学学报(自然科学版)》 CAS 2018年第6期512-516,529,共6页
采用熵过滤方法对Geo-tagged照片进行数据处理,主要考虑游客与居民对旅游活动的影响不同,提出识别特定区域的地理位置用户是游客还是居民的方法.通过改变网格映射方式,提出一种改进的基于Geo-tagged照片的热门旅游景点挖掘方法,并与现... 采用熵过滤方法对Geo-tagged照片进行数据处理,主要考虑游客与居民对旅游活动的影响不同,提出识别特定区域的地理位置用户是游客还是居民的方法.通过改变网格映射方式,提出一种改进的基于Geo-tagged照片的热门旅游景点挖掘方法,并与现有聚类算法进行了分析比较,结果表明改进的算法具有更好的时间性能和延展性.最后,通过获取flickr上带有云南省地理标注的旅游照片,对该方法进行了仿真实验,有效地挖掘得到云南省排名前12的旅游景点. 展开更多
关键词 热门景点挖掘 geo-tagged照片 聚类算法
下载PDF
Mining Semantic Trajectory Patterns from Geo-Tagged Data 被引量:6
2
作者 Guochen Cai Kyungmi Lee Ickjai Lee 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第4期849-862,共14页
User-generated social media data tagged with geographic information present messages of dynamic spatiotemporal trajectories. These increasing mobility data provide potential opportunities to enhance the understanding ... User-generated social media data tagged with geographic information present messages of dynamic spatiotemporal trajectories. These increasing mobility data provide potential opportunities to enhance the understanding of human mobility behaviors. Several trajectory data mining approaches have been proposed to benefit from these rich datasets, but fail to incorporate aspatial semantics in mining. This study investigates mining frequent moving sequences of geographic entities with transit time from geo-tagged data. Different from previous analysis of geographic feature only trajectories, this work focuses on extracting patterns with rich context semantics. We extend raw geographic trajectories generated from geo-tagged data with rich context semantic annotations, use regions-of-interest as stops to represent interesting places, enrich them with multiple aspatial semantic annotations, and propose a semantic trajectory pattern mining algorithm that returns basic and multidimensional semantic trajectory patterns. Experimental results demonstrate that semantic trajectory patterns from our method present semantically meaningful patterns and display richer semantic knowledge. 展开更多
关键词 semantic trajectory SPATIO-TEMPORAL geo-tagged data trajectory pattern mining
原文传递
iTourSPOT:a context-aware framework for next POI recommendation in location-based social networks
3
作者 Lin Wan Han Wang +3 位作者 Yuming Hong Ran Li Wei Chen Zhou Huang 《International Journal of Digital Earth》 SCIE EI 2022年第1期1614-1636,共23页
The rising prosperity of Location-based Social Networks(LBSNs)witnessed an explosion in the availability of geo-tagged social media data,which enables tremendous location-aware online services,especially next point of... The rising prosperity of Location-based Social Networks(LBSNs)witnessed an explosion in the availability of geo-tagged social media data,which enables tremendous location-aware online services,especially next point of interest(POI)recommendation.However,previous next POI recommendation studies usually adopt fix-length time windows for user check-in sequence modeling,leading to a limited capacity in capturing fine-grained user temporal preferences that easily change over time.Besides,existing methods often directly leverage multi-modal contexts as auxiliary to alleviate the data sparsity issue,which fails to fully exploit the sequential patterns of contextual information for inferring user interest drift.To address the above challenges,we propose a novel framework named iTourSPOT which extends traditional collaborative filtering methods with a context-aware POI embedding architecture.For enhancing temporal interests modeling capacity,we associate the context feature extraction with varying-length sessions and incorporate check-in frequencies of POIs as prior knowledge to instruct the session representation learning of our model.Moreover,a collaborative sequence transduction model is designed for joint context sequence modeling and session-based POI recommendation.Experimental results on a real-world geo-tagged photo dataset clearly demonstrate the effectiveness of the proposed framework when compared with state-of-the-art baseline methods,especially in both sparse and cold-start scenarios. 展开更多
关键词 Next POI recommendation context-aware recommendation location-based social network geo-tagged photos
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部