Based on the coupfing between the spin of a particle and gravitoelectromagnetic field, the equation of motion of a spinning test particle in gravitational field is deduced. From this equation of motion, it is found th...Based on the coupfing between the spin of a particle and gravitoelectromagnetic field, the equation of motion of a spinning test particle in gravitational field is deduced. From this equation of motion, it is found that the motion of a spinning particle deviates from the geodesic trajectory, and this deviation originates from the coupling between the spin of the particle and gravitoelectromagnetic field, which is also the origin of Lense-Thirring effects. In post-Newtonian approximations, this equation gives the same results as those of Mathisson-Papapetrou equation. Effect of the deviation of geodesic trajectory is detectable.展开更多
文摘Based on the coupfing between the spin of a particle and gravitoelectromagnetic field, the equation of motion of a spinning test particle in gravitational field is deduced. From this equation of motion, it is found that the motion of a spinning particle deviates from the geodesic trajectory, and this deviation originates from the coupling between the spin of the particle and gravitoelectromagnetic field, which is also the origin of Lense-Thirring effects. In post-Newtonian approximations, this equation gives the same results as those of Mathisson-Papapetrou equation. Effect of the deviation of geodesic trajectory is detectable.