Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of...Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.展开更多
基金supported financially by the National Natural Science Foundation of China(42250101)the Macao Foundation and Macao Science and Technology Development Fund(0001/2019/A1).
文摘Geomagnetic storms are rapid disturbances of the Earth’s magnetosphere.They are related to many geophysical phenomena and have large influences on human activities.Observing and studying geomagnetic storms is thus of great significance to both scientific research and geomagnetic hazards prevention.The Macao Science Satellite-1(MSS-1)project includes two high-precision Chinese geomagnetic satellites successfully launched on May 21,2023.The main purpose of MSS-1 is to accurately measure the Earth’s magnetic field.Here,we analyze early MSS-1 geomagnetic field measurements and report observations of two recent geomagnetic storms that occurred on March 24,2024 and May 11,2024.We also calculate the related geoelectric fields as an initial step towards a quantitative assessment of geomagnetic hazards.
文摘在电网规划设计中,合理规划和科学安排接入变电站馈电线路的方向及数量是防御电网地磁暴灾害的有效措施之一,准确计算电网的地磁感应电流(geomagnetic induced current,GIC)是电网规划防灾的基础。根据子午工程地电场实测数据和广东500 k V电网的网架结构,构建了计算广东电网GIC的全节点模型,完成了2014年9月12日地磁暴事件中电网GIC的理论计算。通过对比计算数据与实测数据,表明利用地电场实测数据计算电网GIC的方法比利用地磁数据计算电网GIC的方法更好,建议加强对地磁暴感应地电场的监测力度,为防御地磁暴灾害提供数据及服务。