A survey and evaluation was carried out on a potential granitoid quarry site in the locality of Linguésso (North West of Ivory Coast) with the aim of identifying and estimating the quantity of exploitable granite...A survey and evaluation was carried out on a potential granitoid quarry site in the locality of Linguésso (North West of Ivory Coast) with the aim of identifying and estimating the quantity of exploitable granite based on the electrical resistivity methods. The combination of electrical trailing, sounding and tomography techniques allowed the determination of the characteristics of the rock deposit, namely the electrical signature (between 19,259 Ωm and 86,316 Ωm), the extension (N90°), the rooting (between 0 and 45 m) and the fracturing (between N14° and N160°) of the granitic formation sought. The modeling resulted in an estimated mineable rock volume of 2,936,250 m<sup>3</sup> providing a production quantity of 7,927,875 tonnes.展开更多
Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is d...Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method.展开更多
Possessing advantages such as high computing efficiency and ease of programming,the Symplectic Euler algorithm can be applied to construct a groundpenetrating radar(GPR)wave propagation numerical model for complex geo...Possessing advantages such as high computing efficiency and ease of programming,the Symplectic Euler algorithm can be applied to construct a groundpenetrating radar(GPR)wave propagation numerical model for complex geoelectric structures.However,the Symplectic Euler algorithm is still a difference algorithm,and for a complicated boundary,ladder grids are needed to perform an approximation process,which results in a certain amount of error.Further,grids that are too dense will seriously decrease computing efficiency.This paper proposes a conformal Symplectic Euler algorithm based on the conformal grid technique,amends the electric/magnetic fieldupdating equations of the Symplectic Euler algorithm by introducing the effective dielectric constant and effective permeability coefficient,and reduces the computing error caused by the ladder approximation of rectangular grids.Moreover,three surface boundary models(the underground circular void model,the undulating stratum model,and actual measurement model)are introduced.By comparing reflection waveforms simulated by the traditional Symplectic Euler algorithm,the conformal Symplectic Euler algorithm and the conformal finite difference time domain(CFDTD),the conformal Symplectic Euler algorithm achieves almost the same level of accuracy as the CFDTD method,but the conformal Symplectic Euler algorithm improves the computational efficiency compared with the CFDTD method dramatically.When the dielectric constants of the two materials vary greatly,the conformal Symplectic Euler algorithm can reduce the pseudo-waves almost by 80% compared with the traditional Symplectic Euler algorithm on average.展开更多
Much study has been done in the study area linking Vertical Electrical Sounding (VES) interpreted results to lithologies in the subsurface though only tend to indicate the vertical changes with the aim of mapping the ...Much study has been done in the study area linking Vertical Electrical Sounding (VES) interpreted results to lithologies in the subsurface though only tend to indicate the vertical changes with the aim of mapping the occurrence of groundwater aquifers. Several boreholes have been drilled in the study area, though not much has been done to compare the vertical and lateral lithologic changes in the study area. This research is based on VES modelled geoelectric layers compared from point to point and using borehole logs as control data to establish inferences of certain lithology in the subsurface. The inversion of each VES curve was obtained using an AGI Earth Imager ID inversion automated computer program and resistivities and thicknesses of a geoelectric model were estimated. The analyzed VES data interpretation achieved using the curve matching technique resulted in mapping the subsurface of the area as portraying H-type;ρ<sub>1</sub> > ρ<sub>2</sub> ρ<sub>3</sub>, K-type;ρ<sub>1</sub> ρ<sub>2</sub> > ρ<sub>3</sub>, A-type;ρ<sub>1</sub> ρ<sub>2</sub> ρ<sub>3</sub>, Q-type;ρ<sub>1</sub> > ρ<sub>2</sub> > ρ<sub>3</sub>, representing 3-Layer subsurface and subsequently a combination of HK, HA and KHK types of curves representing 4-Layer and 5-Layer in the subsurface. The analysis further deployed the use of the surfer software capabilities which combined the VES data to generate profiles running in the west-east and the north-south direction. A closer analysis of the curve types indicates that there exists a sequence showing a shifting of the order of arrangement between the west and the east fragments which incidentally coincides with VES points 8, 9 and 10 in the West-East profiles. The lateral change is noted from the types of curves established and each curve indicates a vertical change in the subsurface. Control log data of lithologies from four boreholes BH1, BH2, BH3 and BH5 to show a qualification that different resistivity values portent different lithologies. Indeed, an analysis at borehole BH3 lithologies is dominated by either compacted rocks or soils, insinuating a scenario of compression experienced in this part of the subsurface which confirmed compression of subsurface formations. A correlation of the VES curve types and their change from one point to another in the study area are evident. This change supported by the surfer generated profiles from the modeled VES data show that there exists and inferred fault line running in the north-south in the area. The inferred fault line by VES mapping, is magnificently outlined by the geological map. There is exuded evidence from this study that the application of VES is able to help map the lateral and the vertical changes in the subsurface of any area but the evidence of the specific lithologies has to be supported by availability of borehole log control data. The VES data was able to enumerate vertical layering of lithologies, lateral changes and even mapping vertical fault line in the study area.展开更多
文摘A survey and evaluation was carried out on a potential granitoid quarry site in the locality of Linguésso (North West of Ivory Coast) with the aim of identifying and estimating the quantity of exploitable granite based on the electrical resistivity methods. The combination of electrical trailing, sounding and tomography techniques allowed the determination of the characteristics of the rock deposit, namely the electrical signature (between 19,259 Ωm and 86,316 Ωm), the extension (N90°), the rooting (between 0 and 45 m) and the fracturing (between N14° and N160°) of the granitic formation sought. The modeling resulted in an estimated mineable rock volume of 2,936,250 m<sup>3</sup> providing a production quantity of 7,927,875 tonnes.
基金supported by the Doctoral Fund Project of the Ministry of Education(No.20130061110060 class tutors)the National Natural Science Foundation of China(No.41504083)National Basic Research Program of China(973Program)(No.2013CB429805)
文摘Frequency-domain airborne electromagnetics is a proven geophysical exploration method.Presently,the interpretation is mainly based on resistivity-depth imaging and onedimensional layered inversion;nevertheless,it is difficult to obtain satisfactory results for two- or three-dimensional complex earth structures using 1D methods.3D forward modeling and inversion can be used but are hampered by computational limitations because of the large number of data.Thus,we developed a 2.5D frequency-domain airborne electromagnetic forward modeling and inversion algorithm.To eliminate the source singularities in the numerical simulations,we split the fields into primary and secondary fields.The primary fields are calculated using homogeneous or layered models with analytical solutions,and the secondary(scattered) fields are solved by the finite-element method.The linear system of equations is solved by using the large-scale sparse matrix parallel direct solver,which greatly improves the computational efficiency.The inversion algorithm was based on damping leastsquares and singular value decomposition and combined the pseudo forward modeling and reciprocity principle to compute the Jacobian matrix.Synthetic and field data were used to test the effectiveness of the proposed method.
基金funded by the National Key Research and Development Program of China(No.2017YFC1501204)the National Natural Science Foundation of China(Nos.51678536,41404096)+2 种基金the Scientific and Technological Research Program of Henan Province(No.171100310100)Program for Innovative Research Team(in Science and Technology)in University of Henan Province(19HASTIT043)the Outstanding Young Talent Research Fund of Zhengzhou University(1621323001).
文摘Possessing advantages such as high computing efficiency and ease of programming,the Symplectic Euler algorithm can be applied to construct a groundpenetrating radar(GPR)wave propagation numerical model for complex geoelectric structures.However,the Symplectic Euler algorithm is still a difference algorithm,and for a complicated boundary,ladder grids are needed to perform an approximation process,which results in a certain amount of error.Further,grids that are too dense will seriously decrease computing efficiency.This paper proposes a conformal Symplectic Euler algorithm based on the conformal grid technique,amends the electric/magnetic fieldupdating equations of the Symplectic Euler algorithm by introducing the effective dielectric constant and effective permeability coefficient,and reduces the computing error caused by the ladder approximation of rectangular grids.Moreover,three surface boundary models(the underground circular void model,the undulating stratum model,and actual measurement model)are introduced.By comparing reflection waveforms simulated by the traditional Symplectic Euler algorithm,the conformal Symplectic Euler algorithm and the conformal finite difference time domain(CFDTD),the conformal Symplectic Euler algorithm achieves almost the same level of accuracy as the CFDTD method,but the conformal Symplectic Euler algorithm improves the computational efficiency compared with the CFDTD method dramatically.When the dielectric constants of the two materials vary greatly,the conformal Symplectic Euler algorithm can reduce the pseudo-waves almost by 80% compared with the traditional Symplectic Euler algorithm on average.
文摘Much study has been done in the study area linking Vertical Electrical Sounding (VES) interpreted results to lithologies in the subsurface though only tend to indicate the vertical changes with the aim of mapping the occurrence of groundwater aquifers. Several boreholes have been drilled in the study area, though not much has been done to compare the vertical and lateral lithologic changes in the study area. This research is based on VES modelled geoelectric layers compared from point to point and using borehole logs as control data to establish inferences of certain lithology in the subsurface. The inversion of each VES curve was obtained using an AGI Earth Imager ID inversion automated computer program and resistivities and thicknesses of a geoelectric model were estimated. The analyzed VES data interpretation achieved using the curve matching technique resulted in mapping the subsurface of the area as portraying H-type;ρ<sub>1</sub> > ρ<sub>2</sub> ρ<sub>3</sub>, K-type;ρ<sub>1</sub> ρ<sub>2</sub> > ρ<sub>3</sub>, A-type;ρ<sub>1</sub> ρ<sub>2</sub> ρ<sub>3</sub>, Q-type;ρ<sub>1</sub> > ρ<sub>2</sub> > ρ<sub>3</sub>, representing 3-Layer subsurface and subsequently a combination of HK, HA and KHK types of curves representing 4-Layer and 5-Layer in the subsurface. The analysis further deployed the use of the surfer software capabilities which combined the VES data to generate profiles running in the west-east and the north-south direction. A closer analysis of the curve types indicates that there exists a sequence showing a shifting of the order of arrangement between the west and the east fragments which incidentally coincides with VES points 8, 9 and 10 in the West-East profiles. The lateral change is noted from the types of curves established and each curve indicates a vertical change in the subsurface. Control log data of lithologies from four boreholes BH1, BH2, BH3 and BH5 to show a qualification that different resistivity values portent different lithologies. Indeed, an analysis at borehole BH3 lithologies is dominated by either compacted rocks or soils, insinuating a scenario of compression experienced in this part of the subsurface which confirmed compression of subsurface formations. A correlation of the VES curve types and their change from one point to another in the study area are evident. This change supported by the surfer generated profiles from the modeled VES data show that there exists and inferred fault line running in the north-south in the area. The inferred fault line by VES mapping, is magnificently outlined by the geological map. There is exuded evidence from this study that the application of VES is able to help map the lateral and the vertical changes in the subsurface of any area but the evidence of the specific lithologies has to be supported by availability of borehole log control data. The VES data was able to enumerate vertical layering of lithologies, lateral changes and even mapping vertical fault line in the study area.