China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major ...China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major controlling factors.This study compared the geological characteristics of various shales and analyzed the influences of different parameters on the formation and accumulation of shale gas.In general,shales in China’s several regions exhibit high total organic carbon(TOC)contents,which lays a sound material basis for shale gas generation.Marine strata generally show high degrees of thermal evolution.In contrast,continental shales manifest low degrees of thermal evolution,necessitating focusing on areas with relatively high degrees of thermal evolution in the process of shale gas surveys for these shales.The shales of the Wufeng and Silurian formations constitute the most favorable shale gas reservoirs since they exhibit the highest porosity among the three types of shales.These shales are followed by those in the Niutitang and Longtan formations.In contrast,the shales of the Doushantuo,Yanchang,and Qingshankou formations manifest low porosities.Furthermore,the shales of the Wufeng and Longmaxi formations exhibit high brittle mineral contents.Despite a low siliceous mineral content,the shales of the Doushantuo Formation feature a high carbonate mineral content,which can increase the shales’brittleness to some extent.For marine-continental transitional shales,where thin interbeds of tight sandstone with unequal thicknesses are generally found,it is recommended that fracturing combined with drainage of multiple sets of lithologic strata should be employed to enhance their shale gas production.展开更多
Shales of the Wufeng-Longmaxi formations in the basin-margin transition zone of southeastern Chongqing,China are characterized by high organic matter content and a significant presence of pyrite development.By examini...Shales of the Wufeng-Longmaxi formations in the basin-margin transition zone of southeastern Chongqing,China are characterized by high organic matter content and a significant presence of pyrite development.By examining numerous scanning electron microscope(SEM)images and considering the crystal and aggregate characteristics of minerals,we identified four types of pyrite in the study area:euhedral crystals,irregular aggregates,framboidal aggregates,and metasomatized organisms.Among these types,framboidal aggregates are the most prevalent.The formation mechanism of framboidal pyrite can be categorized into inorganic and organic origins.As inferred from the pyrite characteristics in the study area,the formation mechanism of the metasomatized organisms aligns with the biologically induced mineralization mode of organic origin,whereas the framboidal aggregates are more associated with the biologically controlled mineralization mode of organic origin.This underscores a close relationship between the pyrite formation and organic matter,which in turn indicates that an organic origin is more consistent with the pyrite characteristics observed in this study area.The pyrite morphology can reflect reactive iron concentration.Euhedral pyrite crystals tend to form under a low reactive iron concentration,whereas the formation of framboidal pyrite requires a high reactive iron concentration.Additionally,the type and grain size of pyrite aggregates can reflect variations in the redox conditions of the depositional environment.Pyrite produces positive effects on reservoir storage space,with intercrystalline organic pores,intercrystalline pores,and mold pores associated with pyrite contributing greatly to the storage spaces.展开更多
The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problem...The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)>middle recovered degree(MRD)>low recovered degree(LRD)>very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.展开更多
Based on the latest drilling, seismic and field outcrop data, the geological characteristics(e.g. strata, development and sedimentary evolution) of the southern segment of the Late Sinian–Early Cambrian Deyang–Anyue...Based on the latest drilling, seismic and field outcrop data, the geological characteristics(e.g. strata, development and sedimentary evolution) of the southern segment of the Late Sinian–Early Cambrian Deyang–Anyue rift trough in the Sichuan Basin are analyzed. First, the strata in the southern segment are complete. The first to second members of Dengying Formation(Deng 1 + Deng 2) are found with relatively stable thickness(400–550 m), and the third to fourth members(Deng 3+ Deng 4) show great thickness difference between the marginal trough and the inner trough, which is up to 250 m. The Cambrian Maidiping Formation and Qiongzhusi Formation in southern Sichuan Basin are relatively thin, with the thickness changing greatly and frequently. Second, the Deyang–Anyue rift trough extended southward during the Deng 4 period, affecting southern Sichuan Basin. Compared to the middle and northern segments of the rift trough, the southern segment is generally wide, gentle and shallow, with multiple steps, and alternating uplifts and sags, which are distributed in finger shape. Third, the Deng 1 + Deng 2 in southern Sichuan Basin records the dominance of carbonate platform and unobvious sedimentary differentiation, and the Deng 4 exhibits obvious sedimentary differentiation, namely, basin–slope–secondary slope–slope–secondary slope–platform margin–restricted platform, from the inner trough to the marginal trough. Fourth, the rift trough in southern Sichuan Basin has evolved in four stages: stabilization of Deng 1–Deng 2, initialization of Deng 3–Deng 4, filling of Maidiping–Qiongzhusi, and extinction of Canglangpu Formation.展开更多
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot...In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.展开更多
In the research, secondary geological disasters of Wenchuan earthquake were defined and the consequences were illustrated based on geological disasters, such as collapse, landslide and debris flow, and threats of barr...In the research, secondary geological disasters of Wenchuan earthquake were defined and the consequences were illustrated based on geological disasters, such as collapse, landslide and debris flow, and threats of barrier lakes. In addition, the characteristics of secondary disasters were analyzed, as follows: Rupture of geological faults lays foundation in terms of geological structure; loose solids provide resources of an earthquake; abundant rainfall and large runoffs are driving forces of an earthquake; rainstorm, flood, and long-term high temperature are major inducing factors. Furthermore, suggestions on prevention of secondary disasters were proposed in terms of prevention before, at and after an earthquake. Finally, the scientific and practical significances of secondary disasters were illustrated.展开更多
Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this ...Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this study,a mining technology of continuous driving and gangue backfilling(CDGB)was proposed.The technology,which can not only alleviate ground subsidence and gangue discharge,but also release the above-mentioned coals,contributes to green and efficient sustainable development of mining.The stability of the system of the solidified body-reserved coal pillar combination(S-C combination)is crucial to the CDGB technology.Therefore,it is of great significance to explore the mechanical and damage characteristics of S-C combination in the synergistic bearing process.First,four sets of differentshaped S-C combination specimens were fabricated and a S-C combination bearing structure in CDGB was constructed to explore the differences in mechanical characteristics and damage modes of different-shaped S-C combination specimens during CDGB.Subsequently,their surface strain field evolutions and acoustic emission(AE)response characteristics in the load-bearing process were obtained with the aid of the digital image correlation technique and the AE signal monitoring system.Furthermore,a damage evolution model based on AE parameters and mechanical parameters was established to clarify the damage evolution law.The following results were obtained:(1)The free area of S-C combination can serve as a quantitative index to evaluate the stability of the overburden control system;(2)The concept of critical value k of the free area was first proposed.When the free area exceeds the critical value k(free area ratio greater than 1.13),the deformation resistance and the free area changes becomes negatively correlated;(3)As the free area expands,the failure of the S-C combination specimen evolves from tensile failure to shear failure.The distribution characteristics of the axial strain field also verified such a change in the failure mode;(4)When the free area expands,the peak AE count gradually changes from“double peaks”to“a single peak”.In this process,the expansion of free area shortens the time for accumulating and releasing energy during loading.Micro cracks generated in the specimen change from a phased steep growth to a continuous increase,and the process in which micro cracks develop,converge,intersect and connect to form macro cracks accelerates.The damage evolution law concluded based on AE parameters and mechanical parameters can well characterize the damage evolution process of S-C combination,providing certain reference for the study on the synergistic bearing of S-C combination during CDGB.展开更多
The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale,which affects the fracturing effect.Accordingly,we designed and conducted indoor experiments related to ...The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale,which affects the fracturing effect.Accordingly,we designed and conducted indoor experiments related to the changes in macro and microscopic characteristics after the interaction of acid with the shale of Wujiaping Formation,based on which the characteristic law of fracture volume modification after acid fracturing was studied using numerical simulation.The results demonstrate that the pores and fractures are enlarged and the structure is significantly loosened after the acid immersion.And a 15%concentration of hydrochloric acid can effectively dissolve shale.Furthermore,the degree of acid-etching reaction is highly variable because of the different carbonate content,which reveals the strong inhomogeneity of the shale system in the Wujiaping Group reservoir section.After the acid interacted with the shale rock samples,the triaxial compressive strength,elastic modulus,and Poisson’s ratio of shale decreased.Moreover,the evaluation of the effect after acid fracturing simulated by fracturing software revealed that the smaller the value of elastic modulus in shale-based reservoirs,the more favorable the fracture volume modification.This discovery not only provides a theoretical basis for the expansion and extension patterns of acid-fracturing in carbonaceous shale formations but also offers research methods and theoretical insights for the fundamental exploration of other deep-seated oil and gas resources.展开更多
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha...Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.展开更多
The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses ...The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses of 30, 50 and 75 MPa. The results indicate that adding Mn can result in the formation of primary and the dynamic precipitated α-Mn phases. In addition, the morphology of the precipitated Mg_(3)Bi_(2) phase and the orientation relationship between Mg_(2)Sn precipitates and α-Mg can be effectively modified. Tailoring the microstructural characteristics is responsible for the improved creep performance of BTM550 alloy. The dominant creep mechanisms in BT55 and BTM550 alloys are dislocation cross-slip and climb, respectively. Furthermore, twinning and pyramidal slip play an assisting part in both alloys during creep process.展开更多
Wulingyuan is a world natural heritage property mainly dominated by rare quartz sandstone peak forest landscape at home and abroad and supplemented by karst landscapes,with a large number of geological and historical ...Wulingyuan is a world natural heritage property mainly dominated by rare quartz sandstone peak forest landscape at home and abroad and supplemented by karst landscapes,with a large number of geological and historical sites,biological and ecological landscape and unique cultural landscapes.Preserving the secluded and beautiful scenery environment,biological environment and ecosystem of subtropical zone,Wulingyuan presents a splendid and magnificent landscape,with high aesthetic value,and becomes an important practice base of aesthetic education.The aesthetic education value of Wulingyuan World Natural Heritage Property can be realized by systematically studying and presenting the aesthetic education value of Wulingyuan World Natural Heritage Property,developing a series of aesthetic education courses to lead tourists into the world of Wulingyuan aesthetic education,carrying out a series of popular science activities of“Wulingyuan World Natural Heritage Property Entering Campus”,and incorporating into the aesthetic education curriculum system of schools,etc.This paper analyzes the landscape aesthetic characteristics of Wulingyuan World Natural Heritage Property thoroughly,which indicates the direction for realizing the aesthetic education value of the property,and also provides a reference for realizing the aesthetic education value of similar world natural heritage property.展开更多
This work extensively investigated global tight sandstone gas, and geologically and geochemically analyzed the tight sandstone gas in China's Ordos, Sichuan, and Tarim basins. We compared typical tight sandstone gas ...This work extensively investigated global tight sandstone gas, and geologically and geochemically analyzed the tight sandstone gas in China's Ordos, Sichuan, and Tarim basins. We compared typical tight sandstone gas in China with that in North America. We proposed six conditions for the formation of China's tight sandstone gas, and illustrated the geological characteristics of tight sandstone gas. In China, gas-bearing tight sandstones were mainly deposited in continental lake deltas and marine-terrigenous facies basin environments, associated with coal-measure strata, and were mostly buried deeper than 2000 in under a formation pressure of 20-30 MPa, with pressure coefficients varying from overpressure to negative pressure. In other countries, tight gas bearing sandstones were dominantly deposited in marine to marine-terrigenous facies environments, occurred in coal-measure strata, and were mostly buried shallower than 2000 m in low-pressure systems. We systematically analyzed tight sandstone gas in the Ordos, Sichuan, and Tarim basins in terms of chemical compositions, geochemical characteristics of carbon isotopes, origins, and sources. Tight sandstone gas in China usually has a hydrocarbon content of 〉95%, with CH4 content 〉90%, and a generally higher dry coefficient. In the three above-mentioned large tight sandstone gas regions,δ13C1 and δJ3C2 mainly ranges from -42%o to -28%o and from -28%o to -21%o, respectively. Type III coal-measure source rocks that closely coexist with tight reservoirs are developed extensively in these gas regions. The organic petrology of source rocks and the carbon isotope compositions of gas indicate that tight sandstone gas in China is dominantly coal-derived gas generated by coal-measure strata. Our analysis of carbon isotope series shows that local isotope reversals are mainly caused by the mixing of gases of different maturities and that were generated at different stages. With increasing maturity, the reversal tendency becomes more apparent. Moreover, natural gas with medium-low maturity (e.g., Xujiahe Formation natural gas in the Sichuan Basin) presents an apparent reversal at a low-maturity stage, a normal series at a medium -maturity stage, and a reversal tendency again at a high-maturity stage. Finally, we proposed four conditions for preferred tight sandstone gas "sweep spots," and illustrated the recoverable reserves, proven reserves, production, and exploration prospects of tight sandstone gas. The geological and geochemical characteristics, origins, sources, and exploration potential of tight sandstone gas in China from our research will be instructive for the future evaluation, prediction, and exploration of tight sandstone gas in China and abroad.展开更多
"Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source ro..."Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source rocks and "'continuous" tight gas reservoirs in the Xujiahe Formation of the middle- south transition region, Sichuan Basin. The source rocks of the Xul Member and reservoir rocks of the Xu2 Member are thick (Xul Member: 40 m, Xu2 Member: 120 m) and are distributed continuously in this study area. The results of drilled wells show that the widespread sandstone reservoirs of the Xu2 Member are charged with natural gas. Therefore, the natural gas reservoirs of the Xu2 Member in the middle-south transition region are "continuous" tight gas reservoirs. The accumulation of "continuous" tight gas reservoirs is controlled by an adequate driving force of the pressure differences between source rocks and reservoirs, which is demonstrated by a "one-dimensional" physical simulation experiment. In this simulation, the natural gas of"continuous" tight gas reservoirs moves tbrward with no preferential petroleum migration pathways (PPMP), and the natural gas saturation of"continuous" tight gas reservoirs is higher than that of conventional reservoirs.展开更多
Tibet is one of the areas with most serious geological hazards in China, and the distribution of disasters has obvious local charac teristics. Tibet can be classified as three parts through zoning the danger degree, t...Tibet is one of the areas with most serious geological hazards in China, and the distribution of disasters has obvious local charac teristics. Tibet can be classified as three parts through zoning the danger degree, the mountain canyon high danger zone of east and southeast Tibet, the plateau mountain lake basin and valley middle danger zone of south Tibet, and the Plateau Mountain lake basin low danger zone of south Tibet. This paper takes the debris flow, collapse, landslide as the key points to analyze the distribution characteristics of geological hazards, and analyze the factors which influence the distribution of geological hazards, such as terrain landform, formation lithology, geologic structure pattern, precipitation, earthquake, human activity and so on. finally, as a conclusion., in whole Tibet, the geological hazards are more in southeast than in northwest, more in mountainous area which in the edge of plateau and river valley than in the interior of plateau and lake basin. And most hazards distribute in the regions where human activity is stronger than in other regions, for example towns or strips along the highway.展开更多
The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± ...The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± 1.6 Ma. Geochemically, the rock is rich in alkalis (especially sodium), light rare earth elements (LREE) and large-ion lithophile elements (LILE), and has a relatively low initial strontium isotopic ratio (Isr=0.7058); thus it is the product of differentiation of crust-mantle mixing source magma. The model of alteration and mineralization zoning is similar to the Hollister (1974) diorite model. The ore fluids have a relatively high salinity and contain significant amounts of CO2, Ca2+, Na+ and ***CI?. The homogenization temperatures of fluid inclusions for the main mineralization stage range from 280 to 420°C, the δ18O values of the ore fluids vary from 3.51 to 5.52 %, the δD values are in the range between ?82.4 and ?59.8 %, the δ34S values of sulphides vary from ?0.3 to 2.49 %, and the δ13C values of CO2 in inclusions range between ?2.66 and ?6.53 %. Isotope data indicate that the hydrothermal ore fluids and ore substances of the Shaxi porphyry copper (gold) deposits were mainly derived from magmatic systems.展开更多
The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor...The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor-quality deep data.Meanwhile,the geological characteristics of hydrocarbon reservoirs in the marine Mesozoic–Paleozoic strata in the South Yellow Sea Basin were analyzed by comparing the source rocks and the reservoir and utilizing drilling and outcrop data.It is believed that the South Yellow Sea Basin roughly underwent six evolutionary stages:plate spreading,plate convergence,stable platform development,foreland basin development,faulted basin development,and depression basin development.The South Yellow Sea Basin has characteristics of a composite platform-fault depression geological structure,with a half-graben geological structure and with a ‘sandwich structure' in the vertical direction.Four sets of hydrocarbon source rocks developed – the upper Permian Longtan–Dalong formation,the lower Permian Qixia formation,the lower Silurian Gaojiabian formation,and the lower Cambrian Hetang formation/Mufushan formation,giving the South Yellow Sea Basin relatively good hydrocarbon potential.The carbonate is the main reservoir rock type in the South Yellow Sea area,and there are four carbonate reservoir types:porous dolomitic,reef-bank,weathered crust,and fractured.There are reservoir-forming horizons similar to the typical hydrocarbon reservoirs in the Yangtze land area developed in the South Yellow Sea,and there are three sets of complete source-reservoir-cap rock assemblages developed in the marine strata,with very good hydrocarbon potential.展开更多
This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA) with a grid search(GS) and K-fold cross validation(K-CV). The SCA includes two le...This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA) with a grid search(GS) and K-fold cross validation(K-CV). The SCA includes two learner layers: a primary learner’s layer and meta-classifier layer. The accuracy of the SCA can be improved by using the GS and K-CV. The GS was developed to match the hyper-parameters and optimise complicated problems. The K-CV is commonly applied to changing the validation set in a training set. In general, a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters. The torque penetration index(TPI) and field penetration index(FPI) are proposed based on shield parameters to express the geological characteristics. The elbow method(EM) and silhouette coefficient(Si) are employed to determine the types of geological characteristics(K) in a Kmeans++ algorithm. A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model. The results show that with the developed framework, the four selected parameters, i.e. thrust, advance rate, cutterhead rotation speed and cutterhead torque, can be used to effectively predict the corresponding geological characteristics.展开更多
1 Introduction The early formation and evolution of the North China craton has been widely concerned by scientists.The Bengbu uplift belt is located in the southeast of the craton,theresearch degree of the belt is rel...1 Introduction The early formation and evolution of the North China craton has been widely concerned by scientists.The Bengbu uplift belt is located in the southeast of the craton,theresearch degree of the belt is relatively low and received increasing attention from many scholars in recent years.Through the author’s practical work and combined with展开更多
Underground brine is an unusual water resource that contains abundant mineral resources. It is distributed widely in the Qaidam Basin, western China, a hyperarid inland basin located in the northern Tibetan Plateau. P...Underground brine is an unusual water resource that contains abundant mineral resources. It is distributed widely in the Qaidam Basin, western China, a hyperarid inland basin located in the northern Tibetan Plateau. Pores in the brine storage medium act as storage space and transmission channels of underground brine. Therefore, the porosity of brine storage medium determines its ability to store brine. In this study, Mahai Salt Lake was used as the research area as a modern saline lake located in the north area of the Qaidam Basin. A total of 100 porosity samples were collected from eight sampling points in two profiles of the research area at sampling depths of 1.30–314.78 m. The porosity distribution characteristics and influencing factors in brine storage medium were analysed according to the measured porosity data. Based on analysis of the pore structure characteristics, the brine storage medium contains intercrystalline pores, unlike conventional freshwater storage mediums. Moreover, the primary salt rock is susceptible to dissolution by lighter brine, facilitating the formation of secondary porosity. Due to the formation of secondary pores, a porosity greater than 20% remains even at buried depths greater than 100 m. Based on the geological statistical analysis, due to the geographic location, salt formation time, and depositional environment, the porosity values of Mahai Salt Lake do not exhibit a wider distribution, but also show more extreme values than a nearby salt lake. Based on the porosity characteristics by depth, due to the presence of secondary pores, flooding, stratigraphic static pressure, and other factors, porosity shows fluctuations with increasing depth.展开更多
The goal of this study is to determine the geometrical and geotechnical characteristics of landslides under various geological conditions using detailed field surveys, laboratory soil tests and precipitation records. ...The goal of this study is to determine the geometrical and geotechnical characteristics of landslides under various geological conditions using detailed field surveys, laboratory soil tests and precipitation records. Three study areas are selected to consider different rocks, including gneiss in Jangheung, granite in Sangju and sedimentary rocks in Pohang, South Korea. Many landslides have occurred in these three areas during the rainy season.Precipitation records indicate that landslides occurring in the gneiss area of Jangheung and granite area of Sangju may be influenced by the hourly rainfall intensity rather than cumulative rainfall.However, landslides occurring in the sedimentary rock area of Pohang may be influenced by hourly rainfall intensity and cumulative rainfall. To investigate the factors that influence these types of landslides, a detailed landslide survey was performed and a series of laboratory soil tests were conducted.According to the detailed field survey, most landslides occurred on the flanks of mountain slopes, and the slope inclination where they occurred mostly ranged from 26 to 30 degrees, regardless of the geological conditions. The landslide in the gneiss area of Jangheung is larger than the landslides in the granite area of Sangju and sedimentary rock area of Pohang.Particularly, the landslide in the sedimentary rock area is shorter and shallower than the landslides in the gneiss and granite areas. Thus, the shape and size of the landslide are clearly related to the geological conditions. According to the integrated soil property and landslide occurrence analyses results, the average dry unit weight of the soils from the landslide sites is smaller than that of the soils obtained from the nonlandslide site. The average coefficient of permeability of soils obtained from the landslide sites is greater than that of soils obtained from the non-landslide sites with the same geology. These results indicate that the soils from the landslide sites are more poorly graded or looser than the soils from the non-landslide sites.展开更多
基金supported by the project of the China Geological Survey for shale gas in Southern China(DD20221852)the National Natural Science Foundation of China(42242010,U2244208)。
文摘China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major controlling factors.This study compared the geological characteristics of various shales and analyzed the influences of different parameters on the formation and accumulation of shale gas.In general,shales in China’s several regions exhibit high total organic carbon(TOC)contents,which lays a sound material basis for shale gas generation.Marine strata generally show high degrees of thermal evolution.In contrast,continental shales manifest low degrees of thermal evolution,necessitating focusing on areas with relatively high degrees of thermal evolution in the process of shale gas surveys for these shales.The shales of the Wufeng and Silurian formations constitute the most favorable shale gas reservoirs since they exhibit the highest porosity among the three types of shales.These shales are followed by those in the Niutitang and Longtan formations.In contrast,the shales of the Doushantuo,Yanchang,and Qingshankou formations manifest low porosities.Furthermore,the shales of the Wufeng and Longmaxi formations exhibit high brittle mineral contents.Despite a low siliceous mineral content,the shales of the Doushantuo Formation feature a high carbonate mineral content,which can increase the shales’brittleness to some extent.For marine-continental transitional shales,where thin interbeds of tight sandstone with unequal thicknesses are generally found,it is recommended that fracturing combined with drainage of multiple sets of lithologic strata should be employed to enhance their shale gas production.
基金funded by SINOPEC(scientific research project P21087-6).
文摘Shales of the Wufeng-Longmaxi formations in the basin-margin transition zone of southeastern Chongqing,China are characterized by high organic matter content and a significant presence of pyrite development.By examining numerous scanning electron microscope(SEM)images and considering the crystal and aggregate characteristics of minerals,we identified four types of pyrite in the study area:euhedral crystals,irregular aggregates,framboidal aggregates,and metasomatized organisms.Among these types,framboidal aggregates are the most prevalent.The formation mechanism of framboidal pyrite can be categorized into inorganic and organic origins.As inferred from the pyrite characteristics in the study area,the formation mechanism of the metasomatized organisms aligns with the biologically induced mineralization mode of organic origin,whereas the framboidal aggregates are more associated with the biologically controlled mineralization mode of organic origin.This underscores a close relationship between the pyrite formation and organic matter,which in turn indicates that an organic origin is more consistent with the pyrite characteristics observed in this study area.The pyrite morphology can reflect reactive iron concentration.Euhedral pyrite crystals tend to form under a low reactive iron concentration,whereas the formation of framboidal pyrite requires a high reactive iron concentration.Additionally,the type and grain size of pyrite aggregates can reflect variations in the redox conditions of the depositional environment.Pyrite produces positive effects on reservoir storage space,with intercrystalline organic pores,intercrystalline pores,and mold pores associated with pyrite contributing greatly to the storage spaces.
基金supported by the National Key R&D Program of China(Nos.2022YFF1303301,2022YFF1302603)the National Natural Science Foundation of China(Nos.52179026,42001035,42101115)+5 种基金the Science and Technology Program of Gansu Province(Nos.22JR5RA072,22JR5RA068)the Postdoctoral Funding Program of Gansu Province(No.E339880139)the Natural Science Foundation of Gansu Province(No.E331040901)the Science and Technology Fund of Gansu Province(No.23JRRA640)the Consulting and Research Project of the Gansu Research Institute of Chinese Engineering Science and Technology Development Strategy(No.GS2022ZDI03)the Open Fund of Technology Innovation Center for Mine Geological Environment Restoration in the Alpine and Arid Regions(No.HHGCKK2204).
文摘The mining of limestone mines plays a crucial role in societal and economic advancement.However,mining activities have led to destructive variations in grassland ecology and soil,causing numerous environmental problems,and effective artificial restoration measures have been used to restore grasslands in the Shimenhe mining areas to different degrees.In this study,we investigated,examined and analyzed plant community structure and its correlation with soil properties across varying degrees of alpine grassland restoration in Qilian Mountains Shimenhe restoration mines using the sample method,and studied the changes in species diversity using five diversity indexes(Simpson index,Shannon index,Margalef index,Dominance index and Evenness index).This study showed that the plant community characteristics with high recovered degree(HRD)>middle recovered degree(MRD)>low recovered degree(LRD)>very low recovered degree(VLRD),11 plant genera comprising 11 species across 10 families were identified.Dominant families with robust ecological adaptability included Leguminosae,Rosaceae,Gramineae,Asteraceae,and Salicaceae.The highest Simpson,Shannon,Margalef and Evenness index of HRD grassland community species were 0.82,1.96,1.66 and 0.89,respectively.The highest Dominance index of VLRD grassland community species was 0.34,which required several restoration methods such as spraying and mulching.Soil pH and EC tended to decrease with increasing restoration,SOC,SMC,TP,AP,NH4-N,TN,AN and NO3-N tended to increase and the content of soil environmental factors contributed to vegetation growth across various restoration levels the mine grassland.In conclusion,our study indicated that the community structure gradually diversified and soil properties changed positively with the increase of restoration degrees in the Qilian Mountains Shimenhe mine,and the best results of HRD restoration were obtained.This study provides the theoretical basis for the restoration and conservation of grasslands in mining areas by demonstrating examined the correlation between plant characteristics and soil properties in restored grasslands in alpine mining areas.
基金Supported by the PetroChina Science and Technology Project (2021DJ0605,2022KT0101)the CNPC Major Science and Technology Project (2021DJ0501)。
文摘Based on the latest drilling, seismic and field outcrop data, the geological characteristics(e.g. strata, development and sedimentary evolution) of the southern segment of the Late Sinian–Early Cambrian Deyang–Anyue rift trough in the Sichuan Basin are analyzed. First, the strata in the southern segment are complete. The first to second members of Dengying Formation(Deng 1 + Deng 2) are found with relatively stable thickness(400–550 m), and the third to fourth members(Deng 3+ Deng 4) show great thickness difference between the marginal trough and the inner trough, which is up to 250 m. The Cambrian Maidiping Formation and Qiongzhusi Formation in southern Sichuan Basin are relatively thin, with the thickness changing greatly and frequently. Second, the Deyang–Anyue rift trough extended southward during the Deng 4 period, affecting southern Sichuan Basin. Compared to the middle and northern segments of the rift trough, the southern segment is generally wide, gentle and shallow, with multiple steps, and alternating uplifts and sags, which are distributed in finger shape. Third, the Deng 1 + Deng 2 in southern Sichuan Basin records the dominance of carbonate platform and unobvious sedimentary differentiation, and the Deng 4 exhibits obvious sedimentary differentiation, namely, basin–slope–secondary slope–slope–secondary slope–platform margin–restricted platform, from the inner trough to the marginal trough. Fourth, the rift trough in southern Sichuan Basin has evolved in four stages: stabilization of Deng 1–Deng 2, initialization of Deng 3–Deng 4, filling of Maidiping–Qiongzhusi, and extinction of Canglangpu Formation.
基金Supported by the Sinopec Science and Technology Project(P21040-1).
文摘In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.
基金Supported by National Natural Science Foundation(40921062)China Geological Survey(1212011121261)~~
文摘In the research, secondary geological disasters of Wenchuan earthquake were defined and the consequences were illustrated based on geological disasters, such as collapse, landslide and debris flow, and threats of barrier lakes. In addition, the characteristics of secondary disasters were analyzed, as follows: Rupture of geological faults lays foundation in terms of geological structure; loose solids provide resources of an earthquake; abundant rainfall and large runoffs are driving forces of an earthquake; rainstorm, flood, and long-term high temperature are major inducing factors. Furthermore, suggestions on prevention of secondary disasters were proposed in terms of prevention before, at and after an earthquake. Finally, the scientific and practical significances of secondary disasters were illustrated.
基金the National Natural Science Foundation of China(Nos.U21A20108,52322403,52174108,and 51974105)the Support Plan for Science&Technology Innovation Talents in Universities of Henan Province(No.21HASTIT024)+1 种基金the Scientific and technological innovation research team of Henan Polytechnic University(No.T2021-5)the Henan Excellent Youth Science Foundation(No.222300420045).
文摘Recovery of the coal buried under buildings,railways and water bodies and the residual coal in irregularly arranged fully mechanized mining faces is a common engineering problem facing underground coal mining.In this study,a mining technology of continuous driving and gangue backfilling(CDGB)was proposed.The technology,which can not only alleviate ground subsidence and gangue discharge,but also release the above-mentioned coals,contributes to green and efficient sustainable development of mining.The stability of the system of the solidified body-reserved coal pillar combination(S-C combination)is crucial to the CDGB technology.Therefore,it is of great significance to explore the mechanical and damage characteristics of S-C combination in the synergistic bearing process.First,four sets of differentshaped S-C combination specimens were fabricated and a S-C combination bearing structure in CDGB was constructed to explore the differences in mechanical characteristics and damage modes of different-shaped S-C combination specimens during CDGB.Subsequently,their surface strain field evolutions and acoustic emission(AE)response characteristics in the load-bearing process were obtained with the aid of the digital image correlation technique and the AE signal monitoring system.Furthermore,a damage evolution model based on AE parameters and mechanical parameters was established to clarify the damage evolution law.The following results were obtained:(1)The free area of S-C combination can serve as a quantitative index to evaluate the stability of the overburden control system;(2)The concept of critical value k of the free area was first proposed.When the free area exceeds the critical value k(free area ratio greater than 1.13),the deformation resistance and the free area changes becomes negatively correlated;(3)As the free area expands,the failure of the S-C combination specimen evolves from tensile failure to shear failure.The distribution characteristics of the axial strain field also verified such a change in the failure mode;(4)When the free area expands,the peak AE count gradually changes from“double peaks”to“a single peak”.In this process,the expansion of free area shortens the time for accumulating and releasing energy during loading.Micro cracks generated in the specimen change from a phased steep growth to a continuous increase,and the process in which micro cracks develop,converge,intersect and connect to form macro cracks accelerates.The damage evolution law concluded based on AE parameters and mechanical parameters can well characterize the damage evolution process of S-C combination,providing certain reference for the study on the synergistic bearing of S-C combination during CDGB.
基金This study is supported by a Scientific Research Project of Sinopec(Program No.P21087-2)the Open Fund of Key Laboratory of Marine Oil&Gas Reservoirs Production,Sinopec(Grant No.33550000-22-FW2099-0004).
文摘The microscopic characteristics and mechanical properties of rocks change after the action of acid on deep shale,which affects the fracturing effect.Accordingly,we designed and conducted indoor experiments related to the changes in macro and microscopic characteristics after the interaction of acid with the shale of Wujiaping Formation,based on which the characteristic law of fracture volume modification after acid fracturing was studied using numerical simulation.The results demonstrate that the pores and fractures are enlarged and the structure is significantly loosened after the acid immersion.And a 15%concentration of hydrochloric acid can effectively dissolve shale.Furthermore,the degree of acid-etching reaction is highly variable because of the different carbonate content,which reveals the strong inhomogeneity of the shale system in the Wujiaping Group reservoir section.After the acid interacted with the shale rock samples,the triaxial compressive strength,elastic modulus,and Poisson’s ratio of shale decreased.Moreover,the evaluation of the effect after acid fracturing simulated by fracturing software revealed that the smaller the value of elastic modulus in shale-based reservoirs,the more favorable the fracture volume modification.This discovery not only provides a theoretical basis for the expansion and extension patterns of acid-fracturing in carbonaceous shale formations but also offers research methods and theoretical insights for the fundamental exploration of other deep-seated oil and gas resources.
基金supported by the Project of Qinghai Science&Technology Department(Grant No.2021-ZJ-956Q).
文摘Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil.
基金jointly supported by the National Natural Science Foundation of China (Grant Nos: 51704209,51701060,51901153)Natural Science Foundation of Shanxi province (Nos: 201801D121088,201901D211096)the Science and Technology Major Project of Shanxi province (Nos: 20191102007,20191102008)。
文摘The creep properties, microstructural characteristics and creep mechanisms of as-cast Mg-5Bi-5Sn(BT55) alloy without and with Mn(BTM550) addition were investigated via creep at 423, 448, and 473 K as well as stresses of 30, 50 and 75 MPa. The results indicate that adding Mn can result in the formation of primary and the dynamic precipitated α-Mn phases. In addition, the morphology of the precipitated Mg_(3)Bi_(2) phase and the orientation relationship between Mg_(2)Sn precipitates and α-Mg can be effectively modified. Tailoring the microstructural characteristics is responsible for the improved creep performance of BTM550 alloy. The dominant creep mechanisms in BT55 and BTM550 alloys are dislocation cross-slip and climb, respectively. Furthermore, twinning and pyramidal slip play an assisting part in both alloys during creep process.
文摘Wulingyuan is a world natural heritage property mainly dominated by rare quartz sandstone peak forest landscape at home and abroad and supplemented by karst landscapes,with a large number of geological and historical sites,biological and ecological landscape and unique cultural landscapes.Preserving the secluded and beautiful scenery environment,biological environment and ecosystem of subtropical zone,Wulingyuan presents a splendid and magnificent landscape,with high aesthetic value,and becomes an important practice base of aesthetic education.The aesthetic education value of Wulingyuan World Natural Heritage Property can be realized by systematically studying and presenting the aesthetic education value of Wulingyuan World Natural Heritage Property,developing a series of aesthetic education courses to lead tourists into the world of Wulingyuan aesthetic education,carrying out a series of popular science activities of“Wulingyuan World Natural Heritage Property Entering Campus”,and incorporating into the aesthetic education curriculum system of schools,etc.This paper analyzes the landscape aesthetic characteristics of Wulingyuan World Natural Heritage Property thoroughly,which indicates the direction for realizing the aesthetic education value of the property,and also provides a reference for realizing the aesthetic education value of similar world natural heritage property.
基金supported by the Petro China Major Scientific and Technical Project (No.: 2014B-0608)the National Science and Technology Major Project of China (NO.: 2011ZX5001-001)
文摘This work extensively investigated global tight sandstone gas, and geologically and geochemically analyzed the tight sandstone gas in China's Ordos, Sichuan, and Tarim basins. We compared typical tight sandstone gas in China with that in North America. We proposed six conditions for the formation of China's tight sandstone gas, and illustrated the geological characteristics of tight sandstone gas. In China, gas-bearing tight sandstones were mainly deposited in continental lake deltas and marine-terrigenous facies basin environments, associated with coal-measure strata, and were mostly buried deeper than 2000 in under a formation pressure of 20-30 MPa, with pressure coefficients varying from overpressure to negative pressure. In other countries, tight gas bearing sandstones were dominantly deposited in marine to marine-terrigenous facies environments, occurred in coal-measure strata, and were mostly buried shallower than 2000 m in low-pressure systems. We systematically analyzed tight sandstone gas in the Ordos, Sichuan, and Tarim basins in terms of chemical compositions, geochemical characteristics of carbon isotopes, origins, and sources. Tight sandstone gas in China usually has a hydrocarbon content of 〉95%, with CH4 content 〉90%, and a generally higher dry coefficient. In the three above-mentioned large tight sandstone gas regions,δ13C1 and δJ3C2 mainly ranges from -42%o to -28%o and from -28%o to -21%o, respectively. Type III coal-measure source rocks that closely coexist with tight reservoirs are developed extensively in these gas regions. The organic petrology of source rocks and the carbon isotope compositions of gas indicate that tight sandstone gas in China is dominantly coal-derived gas generated by coal-measure strata. Our analysis of carbon isotope series shows that local isotope reversals are mainly caused by the mixing of gases of different maturities and that were generated at different stages. With increasing maturity, the reversal tendency becomes more apparent. Moreover, natural gas with medium-low maturity (e.g., Xujiahe Formation natural gas in the Sichuan Basin) presents an apparent reversal at a low-maturity stage, a normal series at a medium -maturity stage, and a reversal tendency again at a high-maturity stage. Finally, we proposed four conditions for preferred tight sandstone gas "sweep spots," and illustrated the recoverable reserves, proven reserves, production, and exploration prospects of tight sandstone gas. The geological and geochemical characteristics, origins, sources, and exploration potential of tight sandstone gas in China from our research will be instructive for the future evaluation, prediction, and exploration of tight sandstone gas in China and abroad.
基金supported by the National Major Grant of"Accumulation Law,Key Technologies and Evaluations of the Stratigraphic Reservoirs"(No.2008ZX05000-001) from the Research Institute of Petroleum Exploration & Development,PetroChina
文摘"Continuous" tight gas reservoirs are those reservoirs which develop in widespread tight sandstones with a continuous distribution of natural gas. In this paper, we summarize the geological features of the source rocks and "'continuous" tight gas reservoirs in the Xujiahe Formation of the middle- south transition region, Sichuan Basin. The source rocks of the Xul Member and reservoir rocks of the Xu2 Member are thick (Xul Member: 40 m, Xu2 Member: 120 m) and are distributed continuously in this study area. The results of drilled wells show that the widespread sandstone reservoirs of the Xu2 Member are charged with natural gas. Therefore, the natural gas reservoirs of the Xu2 Member in the middle-south transition region are "continuous" tight gas reservoirs. The accumulation of "continuous" tight gas reservoirs is controlled by an adequate driving force of the pressure differences between source rocks and reservoirs, which is demonstrated by a "one-dimensional" physical simulation experiment. In this simulation, the natural gas of"continuous" tight gas reservoirs moves tbrward with no preferential petroleum migration pathways (PPMP), and the natural gas saturation of"continuous" tight gas reservoirs is higher than that of conventional reservoirs.
文摘Tibet is one of the areas with most serious geological hazards in China, and the distribution of disasters has obvious local charac teristics. Tibet can be classified as three parts through zoning the danger degree, the mountain canyon high danger zone of east and southeast Tibet, the plateau mountain lake basin and valley middle danger zone of south Tibet, and the Plateau Mountain lake basin low danger zone of south Tibet. This paper takes the debris flow, collapse, landslide as the key points to analyze the distribution characteristics of geological hazards, and analyze the factors which influence the distribution of geological hazards, such as terrain landform, formation lithology, geologic structure pattern, precipitation, earthquake, human activity and so on. finally, as a conclusion., in whole Tibet, the geological hazards are more in southeast than in northwest, more in mountainous area which in the edge of plateau and river valley than in the interior of plateau and lake basin. And most hazards distribute in the regions where human activity is stronger than in other regions, for example towns or strips along the highway.
文摘The Shaxi porphyry copper (gold) deposits are a typical example of porphyry copper deposits associated with diorite in eastern China. Quartz diorite, which hosts the deposits, has a Rb-Sr isochron age of 127.9 ± 1.6 Ma. Geochemically, the rock is rich in alkalis (especially sodium), light rare earth elements (LREE) and large-ion lithophile elements (LILE), and has a relatively low initial strontium isotopic ratio (Isr=0.7058); thus it is the product of differentiation of crust-mantle mixing source magma. The model of alteration and mineralization zoning is similar to the Hollister (1974) diorite model. The ore fluids have a relatively high salinity and contain significant amounts of CO2, Ca2+, Na+ and ***CI?. The homogenization temperatures of fluid inclusions for the main mineralization stage range from 280 to 420°C, the δ18O values of the ore fluids vary from 3.51 to 5.52 %, the δD values are in the range between ?82.4 and ?59.8 %, the δ34S values of sulphides vary from ?0.3 to 2.49 %, and the δ13C values of CO2 in inclusions range between ?2.66 and ?6.53 %. Isotope data indicate that the hydrothermal ore fluids and ore substances of the Shaxi porphyry copper (gold) deposits were mainly derived from magmatic systems.
基金supported by the National Natural Science Foundation of China(No.41506080)the Project of China Geological Survey(Nos.DD20160152,DD20160147,and GZH200800503)+1 种基金the Project of China Ministry of Land and Resources(Nos.XQ-2005-01,and 2009GYXQ10)the Postdoctoral Innovation Fund Project of Shandong Province(No.201602004)
文摘The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor-quality deep data.Meanwhile,the geological characteristics of hydrocarbon reservoirs in the marine Mesozoic–Paleozoic strata in the South Yellow Sea Basin were analyzed by comparing the source rocks and the reservoir and utilizing drilling and outcrop data.It is believed that the South Yellow Sea Basin roughly underwent six evolutionary stages:plate spreading,plate convergence,stable platform development,foreland basin development,faulted basin development,and depression basin development.The South Yellow Sea Basin has characteristics of a composite platform-fault depression geological structure,with a half-graben geological structure and with a ‘sandwich structure' in the vertical direction.Four sets of hydrocarbon source rocks developed – the upper Permian Longtan–Dalong formation,the lower Permian Qixia formation,the lower Silurian Gaojiabian formation,and the lower Cambrian Hetang formation/Mufushan formation,giving the South Yellow Sea Basin relatively good hydrocarbon potential.The carbonate is the main reservoir rock type in the South Yellow Sea area,and there are four carbonate reservoir types:porous dolomitic,reef-bank,weathered crust,and fractured.There are reservoir-forming horizons similar to the typical hydrocarbon reservoirs in the Yangtze land area developed in the South Yellow Sea,and there are three sets of complete source-reservoir-cap rock assemblages developed in the marine strata,with very good hydrocarbon potential.
基金funded by“The Pearl River Talent Recruitment Program”of Guangdong Province in 2019(Grant No.2019CX01G338)the Research Funding of Shantou University for New Faculty Member(Grant No.NTF19024-2019).
文摘This study presents a framework for predicting geological characteristics based on integrating a stacking classification algorithm(SCA) with a grid search(GS) and K-fold cross validation(K-CV). The SCA includes two learner layers: a primary learner’s layer and meta-classifier layer. The accuracy of the SCA can be improved by using the GS and K-CV. The GS was developed to match the hyper-parameters and optimise complicated problems. The K-CV is commonly applied to changing the validation set in a training set. In general, a GS is usually combined with K-CV to produce a corresponding evaluation index and select the best hyper-parameters. The torque penetration index(TPI) and field penetration index(FPI) are proposed based on shield parameters to express the geological characteristics. The elbow method(EM) and silhouette coefficient(Si) are employed to determine the types of geological characteristics(K) in a Kmeans++ algorithm. A case study on mixed ground in Guangzhou is adopted to validate the applicability of the developed model. The results show that with the developed framework, the four selected parameters, i.e. thrust, advance rate, cutterhead rotation speed and cutterhead torque, can be used to effectively predict the corresponding geological characteristics.
基金the project "A study on gold mineralization and prospecting direction in east Anhui province" (item code: 2014-K-5)
文摘1 Introduction The early formation and evolution of the North China craton has been widely concerned by scientists.The Bengbu uplift belt is located in the southeast of the craton,theresearch degree of the belt is relatively low and received increasing attention from many scholars in recent years.Through the author’s practical work and combined with
基金Under the auspices of The National Natural Science Fundation of China(No.41572216,41672243)The Water Resources Project of Jilin Province(No.0773-1441GNJL00390)+1 种基金The Natural Science Fundation of Jilin Province(No.20140101164JC)Science and Technology Support Program of Qinghai Province(No.2012-G-154A)
文摘Underground brine is an unusual water resource that contains abundant mineral resources. It is distributed widely in the Qaidam Basin, western China, a hyperarid inland basin located in the northern Tibetan Plateau. Pores in the brine storage medium act as storage space and transmission channels of underground brine. Therefore, the porosity of brine storage medium determines its ability to store brine. In this study, Mahai Salt Lake was used as the research area as a modern saline lake located in the north area of the Qaidam Basin. A total of 100 porosity samples were collected from eight sampling points in two profiles of the research area at sampling depths of 1.30–314.78 m. The porosity distribution characteristics and influencing factors in brine storage medium were analysed according to the measured porosity data. Based on analysis of the pore structure characteristics, the brine storage medium contains intercrystalline pores, unlike conventional freshwater storage mediums. Moreover, the primary salt rock is susceptible to dissolution by lighter brine, facilitating the formation of secondary porosity. Due to the formation of secondary pores, a porosity greater than 20% remains even at buried depths greater than 100 m. Based on the geological statistical analysis, due to the geographic location, salt formation time, and depositional environment, the porosity values of Mahai Salt Lake do not exhibit a wider distribution, but also show more extreme values than a nearby salt lake. Based on the porosity characteristics by depth, due to the presence of secondary pores, flooding, stratigraphic static pressure, and other factors, porosity shows fluctuations with increasing depth.
基金supported by the Basic Research Project (Grant No. 15-3413) of the Korea Institute of Geoscience and Mineral Resources (KIGAM)funded by the Ministry of Science, ICT and Future Planning of Korea
文摘The goal of this study is to determine the geometrical and geotechnical characteristics of landslides under various geological conditions using detailed field surveys, laboratory soil tests and precipitation records. Three study areas are selected to consider different rocks, including gneiss in Jangheung, granite in Sangju and sedimentary rocks in Pohang, South Korea. Many landslides have occurred in these three areas during the rainy season.Precipitation records indicate that landslides occurring in the gneiss area of Jangheung and granite area of Sangju may be influenced by the hourly rainfall intensity rather than cumulative rainfall.However, landslides occurring in the sedimentary rock area of Pohang may be influenced by hourly rainfall intensity and cumulative rainfall. To investigate the factors that influence these types of landslides, a detailed landslide survey was performed and a series of laboratory soil tests were conducted.According to the detailed field survey, most landslides occurred on the flanks of mountain slopes, and the slope inclination where they occurred mostly ranged from 26 to 30 degrees, regardless of the geological conditions. The landslide in the gneiss area of Jangheung is larger than the landslides in the granite area of Sangju and sedimentary rock area of Pohang.Particularly, the landslide in the sedimentary rock area is shorter and shallower than the landslides in the gneiss and granite areas. Thus, the shape and size of the landslide are clearly related to the geological conditions. According to the integrated soil property and landslide occurrence analyses results, the average dry unit weight of the soils from the landslide sites is smaller than that of the soils obtained from the nonlandslide site. The average coefficient of permeability of soils obtained from the landslide sites is greater than that of soils obtained from the non-landslide sites with the same geology. These results indicate that the soils from the landslide sites are more poorly graded or looser than the soils from the non-landslide sites.