Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D ...Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D property model can also be used to infer or deduce causes of geological objects. 3DGM technology provides technical support for extraction of diverse geoscience information, 3D modeling, and quantitative calculation of mineral resources. Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology; a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate: (1) on basis of the concept of magmatic-hydrothermal Cu polymetallic mineraliza- tion and a porphyry Cu deposit model, a spatial relational database of multiple geoscience information for mineralization in the study area (geology, geophysics, geochemistry, borehole, and cross-section data) was established, and 3D metallogenic geological objects including mineralization stratum, granodiorite, alteration rock, and magnetic anomaly were constructed; (2) on basis of the 3D ore deposit model, 23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method; (3) combined 23,800 surveys involving 21 sections, using VC++ and OpenGL platform, virtual borehole and virtual section with BP network, and an improved inverse distance interpolation (IDW) method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%); (4) comparison of 3D ore bodies, metallogenic geological objects of mineralization, and potential targets of mineralization models in the study area, delineated the 3D spatial and temporal relationship and causal processes among the ore bodies, alteration rock, metallo- genic stratum, intrusive rock, and the Tongshan Fault. This study provides important technical support and a scientific basis for assessment of the Tongshan Cu deposit and surrounding exploration and mineral resources.展开更多
3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situa...3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.展开更多
To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves...To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves high-quality analysis,evaluation,description and geological modeling of reservoirs.The knowledge framework is divided into three categories:technical service standard,technical research method and professional knowledge and cases related to geological objects.In order to build a knowledge base,first of all,it is necessary to form a knowledge classification system and knowledge description standards;secondly,to sort out theoretical understandings and various technical methods for different geologic objects and work out a technical service standard package according to the technical standard;thirdly,to collect typical outcrop and reservoir cases,constantly expand the content of the knowledge base through systematic extraction,sorting and saving,and construct professional knowledge about geological objects.Through the use of encyclopedia based collaborative editing architecture,knowledge construction and sharing can be realized.Geological objects and related attribute parameters can be automatically extracted by using natural language processing(NLP)technology,and outcrop data can be collected by using modern fine measurement technology,to enhance the efficiency of knowledge acquisition,extraction and sorting.In this paper,the geological modeling of fracture-cavity reservoir in the Tarim Basin is taken as an example to illustrate the construction of knowledge base of carbonate reservoir and its application in geological modeling of fracture-cavity carbonate reservoir.展开更多
Take the Cambrian Xiaoerblak Formation in the Keping(Kalpin) outcrop area as an example, a 28 km reservoir scale geological model was built based on description of 7 profiles, observation of more than 1000 thin sectio...Take the Cambrian Xiaoerblak Formation in the Keping(Kalpin) outcrop area as an example, a 28 km reservoir scale geological model was built based on description of 7 profiles, observation of more than 1000 thin sections, petrophysical analysis of 556 samples and many geochemical tests. The Xiaoerblak Formation, 158–178 m thick, is divided into three members and 5 submembers, and is composed of laminated microbialite dolomite(LMD), thrombolite dolomite(TD), foamy-stromatolite dolomite(FSD), oncolite dolomite(OD), grain dolomite(GD)/crystalline dolomite with grain ghost and micritic dolomite(MD)/argillaceous dolomite. The petrology features show that its sediment sequence is micro-organism layer – microbial mound/shoal – tidal flat in carbonate ramp background from bottom up. The reservoir has 5 types of pores, namely, framework pore, dissolved vug, intergranular and intragranular dissolved pore and intercrystalline dissolved pore, as main reservoir space. It is found that the development of pore has high lithofacies selectivity, FSD has the highest average porosity, TD, OD and GD come second. The reservoir is pore-vug reservoir with medium-high porosity and medium-low permeability. The dolomite of Xiaoerblak Formation was formed in para-syngenetic to early diagenetic stage through dolomitization caused by seawater. The reservoir development is jointly controlled by sedimentary facies, micro-organism type, high frequency sequence interface and early dolomitization. The classⅠand Ⅱ reservoirs, with an average thickness of 41.2 m and average reservoir-stratum ratio of about 25.6%, have significant potential. It is predicted that the microbial mounds and shoals in the middle ramp around the ancient uplift are the favorable zones for reservoir development.展开更多
The dynamic updating of the model included: the change of space border,addi- tion and reduction of spatial component (disappearing,dividing and merging),the change of the topological relationship and synchronous dynam...The dynamic updating of the model included: the change of space border,addi- tion and reduction of spatial component (disappearing,dividing and merging),the change of the topological relationship and synchronous dynamic updating of database.Firstly, arming at the deficiency of OO-Solid model in the aspect of dynamic updating,modeling primitives of OO-Solid model were modified.And then the algorithms of dynamic updating of 3D geological model with the node data,line data or surface data change were dis- cussed.The core algorithms was done by establishing space index,following the way of facing the object from bottom to top,namely the dynamic updating from the node to arc, and then to polygon,then to the face of the component and finally to the geological object. The research has important theoretical and practical values in the field of three dimen- sional geological modeling and is significant in the field of mineral resources.展开更多
A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on ...A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on non-uniform rational B-spline (NURBS) technology provides the means to build a refined three-dimensional finite element model with more accurate meshing under complex terrain and geological conditions. Meanwhile, this method is a back-analysis of ground stress with combination of multivariable linear regression model and neural network (ANN) model. Firstly, the regression model is used to fit approximately boundary loads. Regarding the regressed loads as mean value, some sets of boundary loads with the same interval are constructed according to the principle of orthogonal design, to calculate the corresponding ground stress at the observation positions using finite element method. The results (boundary loads and the corresponding ground stress) are added to the samples for ANN training. And on this basis, an ANN model is established to implement higher precise back-analysis of initial ground stress. A practical application case shows that the relative error between the inversed ground stress and observed value is mostly less than 10 %, which can meet the need of engineering design and construction requirements.展开更多
This paper presents a regional 3D geological modeling method based on the stacking ensemble technique to overcome the challenges of sparse borehole data in large-scale linear underground projects.The proposed method t...This paper presents a regional 3D geological modeling method based on the stacking ensemble technique to overcome the challenges of sparse borehole data in large-scale linear underground projects.The proposed method transforms the 3D geological modeling problem into a stratigraphic property classification problem within a subsurface space grid cell framework.Borehole data is pre-processed and trained using stacking method with five different machine learning algorithms.The resulting modelled regional cells are then classified,forming a regional 3D grid geological model.A case study for an area of 324 km2 along Xuzhou metro lines is presented to demonstrate the effectiveness of the proposed model.The study shows an overall prediction accuracy of 85.4%.However,the accuracy for key stratigraphy layers influencing the construction risk,such as karst carve strata,is only 4.3%due to the limited borehole data.To address this issue,an oversampling technique based on the synthetic minority oversampling technique(SMOTE)algorithm is proposed.This technique effectively increases the number of sparse stratigraphic samples and significantly improves the prediction accuracy for karst caves to 65.4%.Additionally,this study analyzes the impact of sampling distance on model accuracy.It is found that a lower sampling interval results in higher prediction accuracy,but also increases computational resources and time costs.Therefore,in this study,an optimal sampling distance of 1 m is chosen to balance prediction accuracy and computation cost.Furthermore,the number of geological strata is found to have a negative effect on prediction accuracy.To mitigate this,it is recommended to merge less significant stratigraphy layers,reducing computation time.For key strata layers,such as karst caves,which have a significant impact on construction risk,further onsite sampling or oversampling using the SMOTE technique is recommended.展开更多
The widely spread Carboniferous-Permian coal seam group in southern China has great potential for coalbed methane resources,but the extensively developed tectonically deformed coal seriously restricts its development....The widely spread Carboniferous-Permian coal seam group in southern China has great potential for coalbed methane resources,but the extensively developed tectonically deformed coal seriously restricts its development.Taking the Dahebian block in western Guizhou as the study area,the geological model of coalbed methane reservoirs in the tectonically deformed coal seam group was established,and the spatial distribution pattern of model parameters was clarified by clustering algorithms and factor analysis.The facies model suggests that the main coal body structures in Nos.1,4,and 7 coal seams are cataclastic coal and granulated coal,whereas the No.11 coal seam is dominated by granulated coal,which has larger thicknesses and spreads more continuously.The in situ permeability of primary undeformed coal,cataclastic coal,granulated coal,and mylonitized coal reservoirs are 0.333 mD,0.931 mD,0.146 mD,and 0.099 mD,respectively,according to the production performance analysis method.The property model constructed by facies-controlled modeling reveals that Nos.1,4,and 7 coal seams have a wider high-permeability area,but the gas content is lower;the high-permeability area in the No.11 coal seam is more limited,but the gas content is higher.The results of the self-organizing map neural network and K-means clustering indicate that the geological model can be divided into 6 clusters,the model parameter characteristics of the 6 clusters are summarized by data analysis in combination with 6 factors extracted by factor analysis,and the application of data analysis results in multi-layer coalbed methane co-development is presented.This study provides ideas for the geological modeling in the tectonically deformed coal seam group and its data analysis.展开更多
The 3D geological modeling is the prerequisite and core foundation for Digital Mine.Although this new technology brings new opportunities and motivation for the mineral exploration industry,it still has many difficult...The 3D geological modeling is the prerequisite and core foundation for Digital Mine.Although this new technology brings new opportunities and motivation for the mineral exploration industry,it still has many difficulties to be solved in this area.Based on the characteristics of mine data and the aim of Digital Mine construction,this paper introduces a theory including multi-source data coupling,multi-modeling methods integration,multi-resolution visualization and detection,and multidimensional data analysis and application.By analyzing problems such as the uncertainty in each step of the modeling process,we designed a novel modeling method that can be applied to the complex geological body modeling,mineral resource/reserve estimation,and the mining exploration engineering.Along with the process of mine exploration,development,and reclamation,3D modeling undergoes the process of"construction-simulation-revision"during which the 3D model is able to be dynamically updated and gradually improved.Based on the result of practical utilization,it is proven that the methodology introduced by this paper can be used to build an effective 3D model by fully using the mining data under the control of spatial information quality evaluation.Our experiments show that such a 3D model can be used to evaluate the mine resource and provide the scientific evidence to improve mining efficiency during the various stages of evolvement process in mine.展开更多
3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geo...3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities contain- ing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geo- logical exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of model- ing approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling tech- nique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound compre- hension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.展开更多
This study presents a comprehensive geological modeling approach to understanding the Hartha Formation in the Balad Oilfield.Utilizing Petrel software,a 3D geological model was developed,integrating well data,seismic ...This study presents a comprehensive geological modeling approach to understanding the Hartha Formation in the Balad Oilfield.Utilizing Petrel software,a 3D geological model was developed,integrating well data,seismic contour map,and log analyses to delineate the reservoir’s structural and petrophysical properties.Data preparation involved organizing well headers,tops,and logs from five key wells,followed by the creation of a structural contour map that identified major and minor faults influencing the reservoir.Structural modeling further enhanced the understanding of the Hartha Formation’s geometry,illustrating how tectonic influences and faulting impacted the spatial distribution of reservoir units.Facies modeling identified a predominance of mudstone and wackestone in the upper Hartha Formation,with improved reservoir qualities in the Har.UA and Har.UB units.Petrophysical modeling demonstrated variations in porosity and water saturation,highlighting the impact of structural features on fluid distribution.The findings underscore the complex geological interplay within the Hartha Formation,providing critical insights for future exploration and optimized hydrocarbon recovery strategies.展开更多
Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this ana...Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.展开更多
In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integr...In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.展开更多
Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error...Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error detection and dynamic correction in 3D geological structure models,we have reviewed the current situation and development trends in 3D geological modeling.The main context of uncertainty in 3D geological structure models is discussed.Major research issues and a general framework system of uncertainty in 3D geological structure models are proposed.We have described in detail the integration of development practices of 3D geological modeling systems,as well as the implementation process for uncertainty evaluation in 3D geological structure models.This study has laid the basis to build theoretical and methodological systems for accuracy assessment and error correction in 3D geological models and can assist in improving 3D modeling techniques under complex geological conditions.展开更多
Sandy debris flow deposits are present in Unit I during Miocene of Gas Field A in the Baiyun Depression of the South China Sea. The paucity of well data and the great variability of the sedimentary microfacies make it...Sandy debris flow deposits are present in Unit I during Miocene of Gas Field A in the Baiyun Depression of the South China Sea. The paucity of well data and the great variability of the sedimentary microfacies make it difficult to identify and predict the distribution patterns of the main gas reservoir, and have seriously hindered further exploration and development of the gas field. Therefore, making full use of the available seismic data is extremely important for predicting the spatial distribution of sedimentary microfacies when constructing three-dimensional reservoir models. A suitable reservoir modeling strategy or workflow controlled by sedimentary microfacies and seismic data has been developed. Five types of seismic attributes were selected to correlate with the sand percentage, and the root mean square (RMS) amplitude performed the best. The relation between the RMS amplitude and the sand percentage was used to construct a reservoir sand distribution map. Three types of main sedimentary microfacies were identified: debris channels, fan lobes, and natural levees. Using constraints from the sedimentary microfacies boundaries, a sedimentary microfacies model was constructed using the sequential indicator and assigned value simulation methods. Finally, reservoir models of physical properties for sandy debris flow deposits controlled by sedimentary microfacies and seismic inversion data were established. Property cutoff values were adopted because the sedimentary microfacies and the reservoir properties from well-logging interpretation are intrinsically different. Selection of appropriate reservoir property cutoffs is a key step in reservoir modeling when using simulation methods based on sedimentary microfacies control. When the abnormal data are truncated and the reservoir properties probability distribution fits a normal distribution, microfacies-controlled reservoir property models are more reliable than those obtained from the sequence Gauss simulation method. The cutoffs for effective porosity of the debris channel, fan lobe, and natural levee facies were 0.2, 0.09, and 0.12, respectively; the corresponding average effective porosities were 0.24, 0.13, and 0.15. The proposed modeling method makes full use of seismic attributes and seismic inversion data, and also makes the property data of single-well depositional microfacies more conformable to a normal distribution with geological significance. Thus, the method allows use of more reliable input data when we construct a model of a sandy debris flow.展开更多
An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then agg...An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then aggregated by the logarithmic linear pooling to determine the 3 D multi-point pattern probabilities at the unknown points,to realize the reconstruction of a 3 D model from 2D cross-section.To solve the problems of reducing pattern variability in the 2 D training image and increasing sampling uncertainty,an adaptive spatial sampling method is introduced,and an iterative simulation strategy is adopted,in which sample points from the region with higher reliability of the previous simulation results are extracted to be additional condition points in the following simulation to improve the pattern probability sampling stability.The comparison of lateral accretion layer conceptual models shows that the reconstructing algorithm using self-adaptive spatial sampling can improve the accuracy of pattern sampling and rationality of spatial structure characteristics,and accurately reflect the morphology and distribution pattern of the lateral accretion layer.Application of the method in reconstructing the meandering river reservoir of the Cretaceous McMurray Formation in Canada shows that the new method can accurately reproduce the shape,spatial distribution pattern and development features of complex lateral accretion layers in the meandering river reservoir under tide effect.The test by sparse wells shows that the simulation accuracy is above 85%,and the coincidence rate of interpretation and prediction results of newly drilled horizontal wells is up to 80%.展开更多
In the phase of field evaluation, the changing of interwell reservoir may be out of control if the geological model was built only on well data due to few existing wells. The uncertainty of the interwell reservoir int...In the phase of field evaluation, the changing of interwell reservoir may be out of control if the geological model was built only on well data due to few existing wells. The uncertainty of the interwell reservoir interpolation based only on well data can be decreased by comprehensive utilization of geological, logging and seismic data, especially by using highly relative seismic properties from 3D seismic data adjusted by well point data to restrict interpolation of geological properties. A 3D-geological model which takes the sand body as the direct modeling object was built through stacking the structure, reservoir and water/oil/gas properties together in 3D space.展开更多
The Horne deposit with rich Cu and Au in Noranda region of Black River Group in Quebec has high economic significance.Current researches on Horne deposit are mostly based on two-dimensional maps and statistical data.I...The Horne deposit with rich Cu and Au in Noranda region of Black River Group in Quebec has high economic significance.Current researches on Horne deposit are mostly based on two-dimensional maps and statistical data.It is hard to reflect the spatial structure and characteristics of Horne orebody directly.In this paper,GIS was used to digitize the mining plan-view maps at different depths,stope maps,the boundary of the massive sulfide in drilling trajectories as well as the grade data of Au and Cu of Horne deposit.Meanwhile,the authors established the grade attribute database.Subsequently the three-dimensional(3D)geological model and grade attribute model of Horne orebody were established by Geological Object Computer Aided Design(GOCAD).Positions of two vents and directions of hydrothermal alteration in Horne deposit were inferred based on the property of the major fault,characteristics of hydrothermal alteration,the enrichment morphology and spatial distribution of high-grade Cu in the Cu attribute model.展开更多
Sequential indicator simulation is a commonly used method for discrete variable simulation in 3D geological modeling and a widely used stochastic simulation method, which can be used not only for continuous variable s...Sequential indicator simulation is a commonly used method for discrete variable simulation in 3D geological modeling and a widely used stochastic simulation method, which can be used not only for continuous variable simulation but also for discrete variable simulation. In this paper, the X Oilfield in the western South China Sea is taken as an example to compare the sequential indicator simulation method and the Indicator Kriging interpolation method. The results of the final comparison show that the results of the lithofacies model established by the Indicator Kriging deterministic interpolation method are overly smooth, and its coincidence rate with the geological statistical results is not high, thus cannot well reflect the heterogeneity of the underground reservoir, while the simulation results of the lithofacies model established by the sequential indicator stochastic simulation method can fit well with the statistical law of the well, which has eliminated the smoothing effect of Kriging interpolation, thus can better reflect the heterogeneity of the underground reservoir. Therefore, the sequential indicator simulation is more suitable for the characterization of sand bodies and the study of reservoir heterogeneity.展开更多
基金supported by the National Basic Research Program of China(Grant No.1212010881001 )the National Scicnce of the 12th "Five-Year Technology Support Program"(Grant No.2010BAE00281-6)+1 种基金the National Natural Science Foundation of China(Grant Nos.40772157,40972232, 41072070)the State Key Laboratory of Geological Processes and Mineral Resources(Grant Nos.GPMR0941,200624)
文摘Three-dimensional geological modeling (3DGM) assists geologists to quantitatively study in three-dimensional (3D) space structures that define temporal and spatial relationships between geological objects. The 3D property model can also be used to infer or deduce causes of geological objects. 3DGM technology provides technical support for extraction of diverse geoscience information, 3D modeling, and quantitative calculation of mineral resources. Based on metallogenic concepts and an ore deposit model, 3DGM technology is applied to analyze geological characteristics of the Tongshan Cu deposit in order to define a metallogenic model and develop a virtual borehole technology; a BP neural network and a 3D interpolation technique were combined to integrate multiple geoscience information in a 3D environment. The results indicate: (1) on basis of the concept of magmatic-hydrothermal Cu polymetallic mineraliza- tion and a porphyry Cu deposit model, a spatial relational database of multiple geoscience information for mineralization in the study area (geology, geophysics, geochemistry, borehole, and cross-section data) was established, and 3D metallogenic geological objects including mineralization stratum, granodiorite, alteration rock, and magnetic anomaly were constructed; (2) on basis of the 3D ore deposit model, 23,800 effective surveys from 94 boreholes and 21 sections were applied to establish 3D orebody models with a kriging interpolation method; (3) combined 23,800 surveys involving 21 sections, using VC++ and OpenGL platform, virtual borehole and virtual section with BP network, and an improved inverse distance interpolation (IDW) method were used to predict and delineate mineralization potential targets (Cu-grade of cell not less than 0.1%); (4) comparison of 3D ore bodies, metallogenic geological objects of mineralization, and potential targets of mineralization models in the study area, delineated the 3D spatial and temporal relationship and causal processes among the ore bodies, alteration rock, metallo- genic stratum, intrusive rock, and the Tongshan Fault. This study provides important technical support and a scientific basis for assessment of the Tongshan Cu deposit and surrounding exploration and mineral resources.
文摘3-D geological modeling plays an increasingly important role in Petroleum Geology, Mining Geology and Engineering Geology. The complexity of geological conditions requires different modeling methods in different situations. This paper summarizes the general concept of geological modeling; compares the characteristics of borehole-based modeling, cross-section based modeling and multi- source interactive modeling; analyses key techniques in 3-D geological modeling; and highlights the main difficulties and directions of future studies.
基金Supported by the China National Science and Technology Major Project(2016ZX05014-002,2017ZX05005)Chinese Academy of Sciences Pilot A Special Project(XDA14010205)。
文摘To improve the efficiency and accuracy of carbonate reservoir research,a unified reservoir knowledge base linking geological knowledge management with reservoir research is proposed.The reservoir knowledge base serves high-quality analysis,evaluation,description and geological modeling of reservoirs.The knowledge framework is divided into three categories:technical service standard,technical research method and professional knowledge and cases related to geological objects.In order to build a knowledge base,first of all,it is necessary to form a knowledge classification system and knowledge description standards;secondly,to sort out theoretical understandings and various technical methods for different geologic objects and work out a technical service standard package according to the technical standard;thirdly,to collect typical outcrop and reservoir cases,constantly expand the content of the knowledge base through systematic extraction,sorting and saving,and construct professional knowledge about geological objects.Through the use of encyclopedia based collaborative editing architecture,knowledge construction and sharing can be realized.Geological objects and related attribute parameters can be automatically extracted by using natural language processing(NLP)technology,and outcrop data can be collected by using modern fine measurement technology,to enhance the efficiency of knowledge acquisition,extraction and sorting.In this paper,the geological modeling of fracture-cavity reservoir in the Tarim Basin is taken as an example to illustrate the construction of knowledge base of carbonate reservoir and its application in geological modeling of fracture-cavity carbonate reservoir.
基金Supported by the China National Science and Technology Major Project of(2016ZX05004-002)Petro China Science and Technology Major Project(2019B-0405 and 2018A-0103)
文摘Take the Cambrian Xiaoerblak Formation in the Keping(Kalpin) outcrop area as an example, a 28 km reservoir scale geological model was built based on description of 7 profiles, observation of more than 1000 thin sections, petrophysical analysis of 556 samples and many geochemical tests. The Xiaoerblak Formation, 158–178 m thick, is divided into three members and 5 submembers, and is composed of laminated microbialite dolomite(LMD), thrombolite dolomite(TD), foamy-stromatolite dolomite(FSD), oncolite dolomite(OD), grain dolomite(GD)/crystalline dolomite with grain ghost and micritic dolomite(MD)/argillaceous dolomite. The petrology features show that its sediment sequence is micro-organism layer – microbial mound/shoal – tidal flat in carbonate ramp background from bottom up. The reservoir has 5 types of pores, namely, framework pore, dissolved vug, intergranular and intragranular dissolved pore and intercrystalline dissolved pore, as main reservoir space. It is found that the development of pore has high lithofacies selectivity, FSD has the highest average porosity, TD, OD and GD come second. The reservoir is pore-vug reservoir with medium-high porosity and medium-low permeability. The dolomite of Xiaoerblak Formation was formed in para-syngenetic to early diagenetic stage through dolomitization caused by seawater. The reservoir development is jointly controlled by sedimentary facies, micro-organism type, high frequency sequence interface and early dolomitization. The classⅠand Ⅱ reservoirs, with an average thickness of 41.2 m and average reservoir-stratum ratio of about 25.6%, have significant potential. It is predicted that the microbial mounds and shoals in the middle ramp around the ancient uplift are the favorable zones for reservoir development.
基金the National Natural Science Foundation of China(40572165)
文摘The dynamic updating of the model included: the change of space border,addi- tion and reduction of spatial component (disappearing,dividing and merging),the change of the topological relationship and synchronous dynamic updating of database.Firstly, arming at the deficiency of OO-Solid model in the aspect of dynamic updating,modeling primitives of OO-Solid model were modified.And then the algorithms of dynamic updating of 3D geological model with the node data,line data or surface data change were dis- cussed.The core algorithms was done by establishing space index,following the way of facing the object from bottom to top,namely the dynamic updating from the node to arc, and then to polygon,then to the face of the component and finally to the geological object. The research has important theoretical and practical values in the field of three dimen- sional geological modeling and is significant in the field of mineral resources.
基金Innovative Research Groups of the National Natural Science Foundation of China (No.51021004)National Science Foundation of China (No. 51079096)Program for New Century Excellent Talents in University (No. NCET-08-0391)
文摘A new back-analysis method of ground stress is proposed with comprehensive consideration of influence of topography, geology and nonlinear physical mechanical properties of rock on ground stress. This method based on non-uniform rational B-spline (NURBS) technology provides the means to build a refined three-dimensional finite element model with more accurate meshing under complex terrain and geological conditions. Meanwhile, this method is a back-analysis of ground stress with combination of multivariable linear regression model and neural network (ANN) model. Firstly, the regression model is used to fit approximately boundary loads. Regarding the regressed loads as mean value, some sets of boundary loads with the same interval are constructed according to the principle of orthogonal design, to calculate the corresponding ground stress at the observation positions using finite element method. The results (boundary loads and the corresponding ground stress) are added to the samples for ANN training. And on this basis, an ANN model is established to implement higher precise back-analysis of initial ground stress. A practical application case shows that the relative error between the inversed ground stress and observed value is mostly less than 10 %, which can meet the need of engineering design and construction requirements.
基金supported by Yunlong Lake Laboratory of Deep Underground Science and Engineering Project(Grant No.104023004)the National Natural Science Foundation of China(Grant Nos.52178328,and 42377190).
文摘This paper presents a regional 3D geological modeling method based on the stacking ensemble technique to overcome the challenges of sparse borehole data in large-scale linear underground projects.The proposed method transforms the 3D geological modeling problem into a stratigraphic property classification problem within a subsurface space grid cell framework.Borehole data is pre-processed and trained using stacking method with five different machine learning algorithms.The resulting modelled regional cells are then classified,forming a regional 3D grid geological model.A case study for an area of 324 km2 along Xuzhou metro lines is presented to demonstrate the effectiveness of the proposed model.The study shows an overall prediction accuracy of 85.4%.However,the accuracy for key stratigraphy layers influencing the construction risk,such as karst carve strata,is only 4.3%due to the limited borehole data.To address this issue,an oversampling technique based on the synthetic minority oversampling technique(SMOTE)algorithm is proposed.This technique effectively increases the number of sparse stratigraphic samples and significantly improves the prediction accuracy for karst caves to 65.4%.Additionally,this study analyzes the impact of sampling distance on model accuracy.It is found that a lower sampling interval results in higher prediction accuracy,but also increases computational resources and time costs.Therefore,in this study,an optimal sampling distance of 1 m is chosen to balance prediction accuracy and computation cost.Furthermore,the number of geological strata is found to have a negative effect on prediction accuracy.To mitigate this,it is recommended to merge less significant stratigraphy layers,reducing computation time.For key strata layers,such as karst caves,which have a significant impact on construction risk,further onsite sampling or oversampling using the SMOTE technique is recommended.
基金supported by the National Natural Science Foundation of China(Grant No.41727801)the Geological Exploration Foundation of Guizhou Province(No.208-9912-JBN-UTSO)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘The widely spread Carboniferous-Permian coal seam group in southern China has great potential for coalbed methane resources,but the extensively developed tectonically deformed coal seriously restricts its development.Taking the Dahebian block in western Guizhou as the study area,the geological model of coalbed methane reservoirs in the tectonically deformed coal seam group was established,and the spatial distribution pattern of model parameters was clarified by clustering algorithms and factor analysis.The facies model suggests that the main coal body structures in Nos.1,4,and 7 coal seams are cataclastic coal and granulated coal,whereas the No.11 coal seam is dominated by granulated coal,which has larger thicknesses and spreads more continuously.The in situ permeability of primary undeformed coal,cataclastic coal,granulated coal,and mylonitized coal reservoirs are 0.333 mD,0.931 mD,0.146 mD,and 0.099 mD,respectively,according to the production performance analysis method.The property model constructed by facies-controlled modeling reveals that Nos.1,4,and 7 coal seams have a wider high-permeability area,but the gas content is lower;the high-permeability area in the No.11 coal seam is more limited,but the gas content is higher.The results of the self-organizing map neural network and K-means clustering indicate that the geological model can be divided into 6 clusters,the model parameter characteristics of the 6 clusters are summarized by data analysis in combination with 6 factors extracted by factor analysis,and the application of data analysis results in multi-layer coalbed methane co-development is presented.This study provides ideas for the geological modeling in the tectonically deformed coal seam group and its data analysis.
基金financially supported by National Natural Science Foundation of China(Grant Nos.41272276,51174289,41102180&40742013)Innovation Research Team Program of Ministry of Education(IRT1085)+2 种基金China National Scientific and Technical Support Program(Grant Nos.201105060-06&2012BAB12B03)National Geological Survey Program(Grant No.shui[2012]-01-035-036)Fundamental Research Funds for the Central Universities(Grant No.2010YD 02)
文摘The 3D geological modeling is the prerequisite and core foundation for Digital Mine.Although this new technology brings new opportunities and motivation for the mineral exploration industry,it still has many difficulties to be solved in this area.Based on the characteristics of mine data and the aim of Digital Mine construction,this paper introduces a theory including multi-source data coupling,multi-modeling methods integration,multi-resolution visualization and detection,and multidimensional data analysis and application.By analyzing problems such as the uncertainty in each step of the modeling process,we designed a novel modeling method that can be applied to the complex geological body modeling,mineral resource/reserve estimation,and the mining exploration engineering.Along with the process of mine exploration,development,and reclamation,3D modeling undergoes the process of"construction-simulation-revision"during which the 3D model is able to be dynamically updated and gradually improved.Based on the result of practical utilization,it is proven that the methodology introduced by this paper can be used to build an effective 3D model by fully using the mining data under the control of spatial information quality evaluation.Our experiments show that such a 3D model can be used to evaluate the mine resource and provide the scientific evidence to improve mining efficiency during the various stages of evolvement process in mine.
基金Project 2001AA135170 supported by the National High-Tech Research and Development (863) Program of China and 06ZR14031 by the Natural ScienceFoundation of Shanghai Municipality
文摘3D geological modeling, one of the most important applications in geosciences of 3D GIS, forms the basis and is a prerequisite for visualized representation and analysis of 3D geological data. Computer modeling of geological faults in 3D is currently a topical research area. Structural modeling techniques of complex geological entities contain- ing reverse faults are discussed and a series of approaches are proposed. The geological concepts involved in computer modeling and visualization of geological fault in 3D are explained, the type of data of geological faults based on geo- logical exploration is analyzed, and a normative database format for geological faults is designed. Two kinds of model- ing approaches for faults are compared: a modeling technique of faults based on stratum recovery and a modeling tech- nique of faults based on interpolation in subareas. A novel approach, called the Unified Modeling Technique for stratum and fault, is presented to solve the puzzling problems of reverse faults, syn-sedimentary faults and faults terminated within geological models. A case study of a fault model of bed rock in the Beijing Olympic Green District is presented in order to show the practical result of this method. The principle and the process of computer modeling of geological faults in 3D are discussed and a series of applied technical proposals established. It strengthens our profound compre- hension of geological phenomena and the modeling approach, and establishes the basic techniques of 3D geological modeling for practical applications in the field of geosciences.
文摘This study presents a comprehensive geological modeling approach to understanding the Hartha Formation in the Balad Oilfield.Utilizing Petrel software,a 3D geological model was developed,integrating well data,seismic contour map,and log analyses to delineate the reservoir’s structural and petrophysical properties.Data preparation involved organizing well headers,tops,and logs from five key wells,followed by the creation of a structural contour map that identified major and minor faults influencing the reservoir.Structural modeling further enhanced the understanding of the Hartha Formation’s geometry,illustrating how tectonic influences and faulting impacted the spatial distribution of reservoir units.Facies modeling identified a predominance of mudstone and wackestone in the upper Hartha Formation,with improved reservoir qualities in the Har.UA and Har.UB units.Petrophysical modeling demonstrated variations in porosity and water saturation,highlighting the impact of structural features on fluid distribution.The findings underscore the complex geological interplay within the Hartha Formation,providing critical insights for future exploration and optimized hydrocarbon recovery strategies.
基金Supported by the National Natural Science Foundation of China(No.51379006 and No.51009106)the Program for New Century Excellent Talents in University of Ministry of Education of China(No.NCET-12-0404)the National Basic Research Program of China("973"Program,No.2013CB035903)
文摘Due to the complex nature of multi-source geological data, it is difficult to rebuild every geological structure through a single 3D modeling method. The multi-source data interpretation method put forward in this analysis is based on a database-driven pattern and focuses on the discrete and irregular features of geological data. The geological data from a variety of sources covering a range of accuracy, resolution, quantity and quality are classified and integrated according to their reliability and consistency for 3D modeling. The new interpolation-approximation fitting construction algorithm of geological surfaces with the non-uniform rational B-spline(NURBS) technique is then presented. The NURBS technique can retain the balance among the requirements for accuracy, surface continuity and data storage of geological structures. Finally, four alternative 3D modeling approaches are demonstrated with reference to some examples, which are selected according to the data quantity and accuracy specification. The proposed approaches offer flexible modeling patterns for different practical engineering demands.
基金the management of Sierra Rutile Company for providing the drillhole dataset used in this studythe Japanese Ministry of Education Science and Technology (MEXT) Scholarship for academic funding
文摘In this research, a method called ANNMG is presented to integrate Artificial Neural Networks and Geostatistics for optimum mineral reserve evaluation. The word ANNMG simply means Artificial Neural Network Model integrated with Geostatiscs, In this procedure, the Artificial Neural Network was trained, tested and validated using assay values obtained from exploratory drillholes. Next, the validated model was used to generalize mineral grades at known and unknown sampled locations inside the drilling region respectively. Finally, the reproduced and generalized assay values were combined and fed to geostatistics in order to develop a geological 3D block model. The regression analysis revealed that the predicted sample grades were in close proximity to the actual sample grades, The generalized grades from the ANNMG show that this process could be used to complement exploration activities thereby reducing drilling requirement. It could also be an effective mineral reserve evaluation method that could oroduce optimum block model for mine design.
基金provided by the Talent Training Project of the National Natural Science Foundation of China (No.J0730534)the National Natural Science Foundation of China (No.40902093)+1 种基金the Morning Light Plan of the Shanghai Educational Development Foundation (No.2007CG34)the Open Foundation of the Shanghai Key Laboratory of Urbanization and Ecological Restoration (No.200803)
文摘Uncertainty in 3D geological structure models has become a bottleneck that restricts the development and application of 3D geological modeling.In order to solve this problem during periods of accuracy assessment,error detection and dynamic correction in 3D geological structure models,we have reviewed the current situation and development trends in 3D geological modeling.The main context of uncertainty in 3D geological structure models is discussed.Major research issues and a general framework system of uncertainty in 3D geological structure models are proposed.We have described in detail the integration of development practices of 3D geological modeling systems,as well as the implementation process for uncertainty evaluation in 3D geological structure models.This study has laid the basis to build theoretical and methodological systems for accuracy assessment and error correction in 3D geological models and can assist in improving 3D modeling techniques under complex geological conditions.
基金partly supported by the National Natural Science Foundation of China(grants no.41272132 and 41572080)the Fundamental Research Funds for central Universities(grant no.2-9-2013-97)the Major State Science and Technology Research Programs(grants no.2008ZX05056-002-02-01 and 2011ZX05010-001-009)
文摘Sandy debris flow deposits are present in Unit I during Miocene of Gas Field A in the Baiyun Depression of the South China Sea. The paucity of well data and the great variability of the sedimentary microfacies make it difficult to identify and predict the distribution patterns of the main gas reservoir, and have seriously hindered further exploration and development of the gas field. Therefore, making full use of the available seismic data is extremely important for predicting the spatial distribution of sedimentary microfacies when constructing three-dimensional reservoir models. A suitable reservoir modeling strategy or workflow controlled by sedimentary microfacies and seismic data has been developed. Five types of seismic attributes were selected to correlate with the sand percentage, and the root mean square (RMS) amplitude performed the best. The relation between the RMS amplitude and the sand percentage was used to construct a reservoir sand distribution map. Three types of main sedimentary microfacies were identified: debris channels, fan lobes, and natural levees. Using constraints from the sedimentary microfacies boundaries, a sedimentary microfacies model was constructed using the sequential indicator and assigned value simulation methods. Finally, reservoir models of physical properties for sandy debris flow deposits controlled by sedimentary microfacies and seismic inversion data were established. Property cutoff values were adopted because the sedimentary microfacies and the reservoir properties from well-logging interpretation are intrinsically different. Selection of appropriate reservoir property cutoffs is a key step in reservoir modeling when using simulation methods based on sedimentary microfacies control. When the abnormal data are truncated and the reservoir properties probability distribution fits a normal distribution, microfacies-controlled reservoir property models are more reliable than those obtained from the sequence Gauss simulation method. The cutoffs for effective porosity of the debris channel, fan lobe, and natural levee facies were 0.2, 0.09, and 0.12, respectively; the corresponding average effective porosities were 0.24, 0.13, and 0.15. The proposed modeling method makes full use of seismic attributes and seismic inversion data, and also makes the property data of single-well depositional microfacies more conformable to a normal distribution with geological significance. Thus, the method allows use of more reliable input data when we construct a model of a sandy debris flow.
基金Supported by the China National Science and Technology Major Project(2017ZX05005-004-002,2016ZX05031-002-001)National Natural Science Foundation of China(41872138)Open Foundation of Top Disciplines in Yangtze University(2019KFJJ0818029)。
文摘An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then aggregated by the logarithmic linear pooling to determine the 3 D multi-point pattern probabilities at the unknown points,to realize the reconstruction of a 3 D model from 2D cross-section.To solve the problems of reducing pattern variability in the 2 D training image and increasing sampling uncertainty,an adaptive spatial sampling method is introduced,and an iterative simulation strategy is adopted,in which sample points from the region with higher reliability of the previous simulation results are extracted to be additional condition points in the following simulation to improve the pattern probability sampling stability.The comparison of lateral accretion layer conceptual models shows that the reconstructing algorithm using self-adaptive spatial sampling can improve the accuracy of pattern sampling and rationality of spatial structure characteristics,and accurately reflect the morphology and distribution pattern of the lateral accretion layer.Application of the method in reconstructing the meandering river reservoir of the Cretaceous McMurray Formation in Canada shows that the new method can accurately reproduce the shape,spatial distribution pattern and development features of complex lateral accretion layers in the meandering river reservoir under tide effect.The test by sparse wells shows that the simulation accuracy is above 85%,and the coincidence rate of interpretation and prediction results of newly drilled horizontal wells is up to 80%.
文摘In the phase of field evaluation, the changing of interwell reservoir may be out of control if the geological model was built only on well data due to few existing wells. The uncertainty of the interwell reservoir interpolation based only on well data can be decreased by comprehensive utilization of geological, logging and seismic data, especially by using highly relative seismic properties from 3D seismic data adjusted by well point data to restrict interpolation of geological properties. A 3D-geological model which takes the sand body as the direct modeling object was built through stacking the structure, reservoir and water/oil/gas properties together in 3D space.
文摘The Horne deposit with rich Cu and Au in Noranda region of Black River Group in Quebec has high economic significance.Current researches on Horne deposit are mostly based on two-dimensional maps and statistical data.It is hard to reflect the spatial structure and characteristics of Horne orebody directly.In this paper,GIS was used to digitize the mining plan-view maps at different depths,stope maps,the boundary of the massive sulfide in drilling trajectories as well as the grade data of Au and Cu of Horne deposit.Meanwhile,the authors established the grade attribute database.Subsequently the three-dimensional(3D)geological model and grade attribute model of Horne orebody were established by Geological Object Computer Aided Design(GOCAD).Positions of two vents and directions of hydrothermal alteration in Horne deposit were inferred based on the property of the major fault,characteristics of hydrothermal alteration,the enrichment morphology and spatial distribution of high-grade Cu in the Cu attribute model.
文摘Sequential indicator simulation is a commonly used method for discrete variable simulation in 3D geological modeling and a widely used stochastic simulation method, which can be used not only for continuous variable simulation but also for discrete variable simulation. In this paper, the X Oilfield in the western South China Sea is taken as an example to compare the sequential indicator simulation method and the Indicator Kriging interpolation method. The results of the final comparison show that the results of the lithofacies model established by the Indicator Kriging deterministic interpolation method are overly smooth, and its coincidence rate with the geological statistical results is not high, thus cannot well reflect the heterogeneity of the underground reservoir, while the simulation results of the lithofacies model established by the sequential indicator stochastic simulation method can fit well with the statistical law of the well, which has eliminated the smoothing effect of Kriging interpolation, thus can better reflect the heterogeneity of the underground reservoir. Therefore, the sequential indicator simulation is more suitable for the characterization of sand bodies and the study of reservoir heterogeneity.