期刊文献+
共找到55,433篇文章
< 1 2 250 >
每页显示 20 50 100
Preliminary research and scheme design of deep underground in situ geo-information detection experiment for Geology in Time
1
作者 Heping Xie Ru Zhang +13 位作者 Zetian Zhang Yinshuang Ai Jianhui Deng Yun Chen Yong Zhou Mingchuan Li Liqiang Liu Mingzhong Gao Zeqian Yang Weiqiang Ling Heng Gao Qijun Hao Kun Xiao Chendi Lou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the L... The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the Long-Range Objectives Through the Year 2035.It is important to reveal the evolutionary process and mechanism of deep tectonics to understand the earth’s past,present and future.The academic con-notation of Geology in Time has been given for the first time,which refers to the multi-field evolution response process of geological bodies at different time and spatial scales caused by geological processes inside and outside the Earth.Based on the deep in situ detection space and the unique geological envi-ronment of China Jinping Underground Laboratory,the scientific issue of the correlation mechanism and law between deep internal time-varying and shallow geological response is given attention.Innovative research and frontier exploration on deep underground in situ geo-information detection experiments for Geology in Time are designed to be carried out,which will have the potential to explore the driving force of Geology in Time,reveal essential laws of deep earth science,and explore innovative technologies in deep underground engineering. 展开更多
关键词 Deep underground geology in Time China Jinping Underground Laboratory In situ detection
下载PDF
Exploration of the Construction of the Civic and Political Education in Engineering Geology Course
2
作者 Dingyuan Luo 《Journal of Contemporary Educational Research》 2024年第2期14-18,共5页
The purpose of this paper is to discuss the integration of the elements of civic and political education into the engineering geology course to improve students’ideological and moral qualities.It is proposed that by ... The purpose of this paper is to discuss the integration of the elements of civic and political education into the engineering geology course to improve students’ideological and moral qualities.It is proposed that by integrating elements of civic and political education,students are guided to form a positive attitude toward engineering practice as well as correct values and ethics.With regard to the teaching design and implementation of the course,the implementation paths of teacher team building,careful teaching design,innovative teaching methods,and the integration of civic and politics in practical teaching are proposed to summarize the significance of integrating the elements of civic and political education in the construction of the engineering geology course.It is pointed out that this integration not only improves the quality of the course,but also provides a reference for the civic and political education of other similar professional courses.This integration not only focuses on the teaching of professional knowledge,but also pays more attention to the cultivation of students’ideology and morality,which provides a model and guidance for shaping new talents with all-round development. 展开更多
关键词 Engineering geology Civic and political education Implementation approach
下载PDF
Deep seabed mining:Frontiers in engineering geology and environment 被引量:1
3
作者 Xingsen Guo Ning Fan +4 位作者 Yihan Liu Xiaolei Liu Zekun Wang Xiaotian Xie Yonggang Jia 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期1-31,共31页
Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by effor... Ocean mining activities have been ongoing for nearly 70 years,making great contributions to industrialization.Given the increasing demand for energy,along with the restructuring of the energy supply catalyzed by efforts to achieve a low-carbon economy,deep seabed mining will play an important role in addressing energy-and resource-related problems in the future.However,deep seabed mining remains in the exploratory stage,with many challenges presented by the high-pressure,low-temperature,and complex geologic and hydrodynamic environments in deep-sea mining areas,which are inaccessible to human activities.Thus,considerable efforts are required to ensure sustainable,economic,reliable,and safe deep seabed mining.This study reviews the latest advances in marine engineering geology and the environment related to deep-sea min-ing activities,presents a bibliometric analysis of the development of ocean mineral resources since the 1950s,summarizes the development,theory,and issues related to techniques for the three stages of ocean mining(i.e.,exploration,extraction,and closure),and discusses the engineering geology environment,geological disasters,in-situ monitoring techniques,envi-ronmental protection requirements,and environmental effects in detail.Finally,this paper gives some key conclusions and future perspectives to provide insights for subsequent studies and commercial mining operations. 展开更多
关键词 Deep seabed mining Marine engineering geology geological disasters ENVIRONMENT TECHNIQUES
下载PDF
Forward prediction for tunnel geology and classification of surrounding rock based on seismic wave velocity layered tomography 被引量:1
4
作者 Bin Liu Jiansen Wang +2 位作者 Senlin Yang Xinji Xu Yuxiao Ren 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期179-190,共12页
Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in fron... Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application. 展开更多
关键词 Tunnel geological forward-prospecting Seismic wave velocity Layered inversion Surrounding rock classification Artificial neural network(ANN)
下载PDF
Extraction and imaging of indicator elements for non-destructive,in-situ,fast identification of adverse geology in tunnels
5
作者 Fumin Liu Peng Lin +2 位作者 Zhenhao Xu Ruiqi Shao Tao Han 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1437-1449,共13页
The lag in quantitative methods and detection techniques for geologic information has resulted in time-consuming and human-experienced geologic analysis in tunnels.Geochemical indicators of rocks can be used to identi... The lag in quantitative methods and detection techniques for geologic information has resulted in time-consuming and human-experienced geologic analysis in tunnels.Geochemical indicators of rocks can be used to identify adverse geology and to explain the intrinsic causes of damage to normal rocks.This study proposes a method to identify adverse geology by extracting and imaging the indicator elements.The mapping relationship between rock components and geologic bodies is quickly determined by indicator element extraction based on factor analysis,and then the data are gridded for image output.The location and size of the target adverse geology are visually identified through the distribution images of the indicator elements,thus reducing data dimensions and analysis time.A non-destructive,in-situ and fast element detection technique in tunnels was adopted to speed up the process of geology identification.The accuracy of the detection was validated by comparing field and laboratory test results.This study further confirms and refines the previous research,and the results provide references for geological,mining and underground projects. 展开更多
关键词 Adverse geology identification Indicator elements Rock geochemistry Tunnel engineering geological analysis
下载PDF
Adverse Geology Identification Through Mineral Anomaly Analysis During Tunneling:Methodology and Case Study
6
作者 Zhenhao Xu Tengfei Yu +1 位作者 Peng Lin Shucai Li 《Engineering》 SCIE EI CAS CSCD 2023年第8期150-160,共11页
Accurate and effective identification of adverse geology is crucial for safe and efficient tunnel construction.Current methods of identifying adverse geology depend on the experience of geologists and are prone to mis... Accurate and effective identification of adverse geology is crucial for safe and efficient tunnel construction.Current methods of identifying adverse geology depend on the experience of geologists and are prone to misjudgment and omissions.Here,we propose a method for adverse geology identification in tunnels based on mineral anomaly analysis.The method is based on the theory of geoanomaly,and the mineral anomalies are geological markers of the presence of adverse geology.The method uses exploration data analysis(EDA)to calculate mineral anomaly thresholds,then evaluates the mineral anomalies based on the thresholds and identifies adverse geology based on the characteristics of the mineral anomalies.We have established a dynamic expansion process for background samples to achieve the dynamic evaluation of mineral anomalies by adjusting anomaly thresholds.This method has been validated and applied in a tunnel excavated in granite.As shown herein,in the tunnel range of 142+800–142+860,the fault F37 was successfully identified based on an anomalous decrease in the diagenetic minerals plagioclase and hornblende,as well as an anomalous increase in the content of the alteration minerals chlorite,laumonite,and epidote.The proposed method provides a timely warning when a tunnel enters areas affected by adverse geology and identifies whether the tunnel is gradually approaching or moving away from the fault.In addition,the applicability,accuracy,and further improvement of the method are discussed.This method improves our ability to identify adverse geology,from qualitative to quantitative,and can provide reference and guidance for the identification of adverse geology in mining and underground engineering. 展开更多
关键词 Mineral anomaly Adverse geology Fault ALTERATION Anomaly threshold
下载PDF
Wisdom and Geology, the North German Basin, and the Significance of Thrown Dices
7
作者 Heinz-Jürgen Brink 《International Journal of Geosciences》 CAS 2023年第1期150-186,共37页
For thousands of years, mankind is observing the surrounding nature. Often, they found no obvious clues for inexplicable and complex facts, leading to the belief that their wisdom was limited. This is in the majority ... For thousands of years, mankind is observing the surrounding nature. Often, they found no obvious clues for inexplicable and complex facts, leading to the belief that their wisdom was limited. This is in the majority of cases still true today, but based on hundreds of years of (geo-) scientific work some older thoughts can now be readjusted by combining newer geological, environmental, historical and philosophical clues. Facts about the development of the North German Basin are used to demonstrate the variability of geological systems and how these can be described by taking dice as a metaphor for ruling geological parameters. This includes all kinds of plate tectonically controlled basin forming processes, especially metamorphism of the lower crust due to a fixed mantle plume, basin filling processes with their galactic and lunar overprints, basin modifying tectonics due to internal (halokinesis, inversion) or external forces (one-sided loads at the surface due to mighty Delta sediments or glacial ice sheets) and geochemical reactions as a result of pressure and temperature changes in course of subsidence. Especially, the Rotliegend (Lower Permian) Gas Play is one of the possible illustrations of the entity of the North German Basin with its more than 70 - 90 independent parameters belonging to a global set of very complex hydrocarbon systems. Processes on Earth like the formation of systems of hydrocarbon fields as well as environmental systems (e.g. river systems, lakes, islands, sedimentary basins) are subordinated to the dices of nature and are steered invisibly by a selection of rules of the game that one understands as natural laws. The facts and remaining uncertainties as well as problems with subsurface-related processes (e.g. manmade tectonics, subsidence and uplift) guide the thoughts of engaged individuals on how to proceed wisely with limited predictability of challenges and dangers of a subsurface system. This work will be a trial to associate once more the natural sciences (geology) and the humanities (philosophy) for the benefit of both. 展开更多
关键词 North German Basin Subsurface Problems geological Parameters WISDOM THOUGHTS Dices
下载PDF
William Morris Davis: Father of Geomorphology or Father of Geology’s Unrecognized Paradigm Problem
8
作者 Eric Clausen 《Open Journal of Geology》 2023年第6期579-597,共19页
An often unrecognized problem is the geology and glacial history paradigm’s inability to explain topographic map drainage system and erosional landform evidence, which means geology research studies rarely address th... An often unrecognized problem is the geology and glacial history paradigm’s inability to explain topographic map drainage system and erosional landform evidence, which means geology research studies rarely address that type of topographic map evidence. The problem originated in the late 19<sup>th</sup> century with William Morris Davis who is sometimes called the father of geomorphology and was one of the first geologists to interpret what in the late 19<sup>th</sup> century were newly available topographic maps. An 1889 Davis paper describes selected drainage system evidence observed on an advance copy of the 1890 Doylestown (Pennsylvania) topographic map and an 1892 Ward paper written after discussions with Davis describes additional selected drainage system evidence seen on the same map. Both papers fail to mention the majority of the Doylestown map’s drainage system features including most barbed tributaries, asymmetric drainage divides, and through (dry) valleys crossing major drainage divides. Had Davis used all of the map’s drainage system and erosional landform evidence he should have recognized the map evidence shows headward erosion of an east-oriented Neshaminy Creek valley captured southwest-oriented streams which headward erosion of the south-oriented Delaware River valley and its east-oriented tributary Tohickon Creek valley had beheaded. Consciously or unconsciously, Davis chose not to alert future investigators that Doylestown topographic map evidence did not support his yet-to-be-published Pennsylvania and New Jersey erosion history interpretations and instead Davis proceeded to develop and promote erosion history interpretations which the map evidence did not support. 展开更多
关键词 Doylestown Topographic Map Drainage Systems geology Paradigm History of geology Robert DeCourcy Ward Topographic Map Interpretation
下载PDF
Geology and Mineral Deposits of Saraikistan (South Punjab, Koh Sulaiman Range) of Pakistan: A Tabular Review of Recently Discovered Biotas from Pakistan and Paleobiogeographic Link: Phylogeny and Hypodigm of Poripuchian Titanosaurs from Indo-Pakistan
9
作者 Muhammad Sadiq Malkani 《Open Journal of Geology》 2023年第8期900-958,共59页
Saraikistan (South Punjab and surrounding) area of Pakistan is located in the central Pakistan. This area represents Triassic-Jurassic to Recent sedimentary marine and terrestrial strata. Most of the Mesozoic and Earl... Saraikistan (South Punjab and surrounding) area of Pakistan is located in the central Pakistan. This area represents Triassic-Jurassic to Recent sedimentary marine and terrestrial strata. Most of the Mesozoic and Early Cenozoic are represented by marine strata with rare terrestrial deposits, while the Late Cenozoic is represented by continental fluvial deposits. This area hosts significant mineral deposits and their development can play a significant role in the development of Saraikistan region and ultimately for Pakistan. The data of recently discovered biotas from Cambrian to Miocene age are tabulated for quick view. Mesozoic biotas show a prominent paleobiogeographic link with Gondwana and Cenozoic show Eurasian. Phylogeny and hypodigm of Poripuchian titanosaurs from India and Pakistan are hinted at here. 展开更多
关键词 geology Minerals Cement Dams Biota Tabular Data Paleobiogeography Saraikistan South Punjab Sulaiman Range Pakistan Titanosaurs Indo-Pakistan
下载PDF
Geological conditions and reservoir characteristics of various shales in major shalehosted regions of China
10
作者 Shu-jing Bao Tian-xu Guo +6 位作者 Jin-tao Yin Wei-bin Liu Sheng-jian Wang Hao-han Li Zhi Zhou Shi-zhen Li Xiang-lin Chen 《China Geology》 CAS CSCD 2024年第1期138-149,共12页
China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major ... China is home to shales of three facies:Marine shale,continental shale,and marine-continental transitional shale.Different types of shale gas are associated with significantly different formation conditions and major controlling factors.This study compared the geological characteristics of various shales and analyzed the influences of different parameters on the formation and accumulation of shale gas.In general,shales in China’s several regions exhibit high total organic carbon(TOC)contents,which lays a sound material basis for shale gas generation.Marine strata generally show high degrees of thermal evolution.In contrast,continental shales manifest low degrees of thermal evolution,necessitating focusing on areas with relatively high degrees of thermal evolution in the process of shale gas surveys for these shales.The shales of the Wufeng and Silurian formations constitute the most favorable shale gas reservoirs since they exhibit the highest porosity among the three types of shales.These shales are followed by those in the Niutitang and Longtan formations.In contrast,the shales of the Doushantuo,Yanchang,and Qingshankou formations manifest low porosities.Furthermore,the shales of the Wufeng and Longmaxi formations exhibit high brittle mineral contents.Despite a low siliceous mineral content,the shales of the Doushantuo Formation feature a high carbonate mineral content,which can increase the shales’brittleness to some extent.For marine-continental transitional shales,where thin interbeds of tight sandstone with unequal thicknesses are generally found,it is recommended that fracturing combined with drainage of multiple sets of lithologic strata should be employed to enhance their shale gas production. 展开更多
关键词 Shale gas Marine shale Continental shale Marine-continental transitional shale Neoproterozoic-Cretaceous strata geological conditions Reservoir characteristics Petroleum geological survey engineering
下载PDF
Scale-space effect and scale hybridization in image intelligent recognition of geological discontinuities on rock slopes
11
作者 Mingyang Wang Enzhi Wang +1 位作者 Xiaoli Liu Congcong Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1315-1336,共22页
Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understa... Geological discontinuity(GD)plays a pivotal role in determining the catastrophic mechanical failure of jointed rock masses.Accurate and efficient acquisition of GD networks is essential for characterizing and understanding the progressive damage mechanisms of slopes based on monitoring image data.Inspired by recent advances in computer vision,deep learning(DL)models have been widely utilized for image-based fracture identification.The multi-scale characteristics,image resolution and annotation quality of images will cause a scale-space effect(SSE)that makes features indistinguishable from noise,directly affecting the accuracy.However,this effect has not received adequate attention.Herein,we try to address this gap by collecting slope images at various proportional scales and constructing multi-scale datasets using image processing techniques.Next,we quantify the intensity of feature signals using metrics such as peak signal-to-noise ratio(PSNR)and structural similarity(SSIM).Combining these metrics with the scale-space theory,we investigate the influence of the SSE on the differentiation of multi-scale features and the accuracy of recognition.It is found that augmenting the image's detail capacity does not always yield benefits for vision-based recognition models.In light of these observations,we propose a scale hybridization approach based on the diffusion mechanism of scale-space representation.The results show that scale hybridization strengthens the tolerance of multi-scale feature recognition under complex environmental noise interference and significantly enhances the recognition accuracy of GD.It also facilitates the objective understanding,description and analysis of the rock behavior and stability of slopes from the perspective of image data. 展开更多
关键词 Image processing geological discontinuities Deep learning MULTI-SCALE Scale-space theory Scale hybridization
下载PDF
Estimation of the anisotropy of hydraulic conductivity through 3D fracture networks using the directional geological entropy
12
作者 Chuangbing Zhou Zuyang Ye +2 位作者 Chi Yao Xincheng Fan Feng Xiong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期137-148,共12页
With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directi... With an extension of the geological entropy concept in porous media,the approach called directional entrogram is applied to link hydraulic behavior to the anisotropy of the 3D fracture networks.A metric called directional entropic scale is used to measure the anisotropy of spatial order in different directions.Compared with the traditional connectivity indexes based on the statistics of fracture geometry,the directional entropic scale is capable to quantify the anisotropy of connectivity and hydraulic conductivity in heterogeneous 3D fracture networks.According to the numerical analysis of directional entrogram and fluid flow in a number of the 3D fracture networks,the hydraulic conductivities and entropic scales in different directions both increase with spatial order(i.e.,trace length decreasing and spacing increasing)and are independent of the dip angle.As a result,the nonlinear correlation between the hydraulic conductivities and entropic scales from different directions can be unified as quadratic polynomial function,which can shed light on the anisotropic effect of spatial order and global entropy on the heterogeneous hydraulic behaviors. 展开更多
关键词 3D fracture network geological entropy Directional entropic scale ANISOTROPY Hydraulic conductivity
下载PDF
Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions
13
作者 Jiaqi Wu Li Zhuo +4 位作者 Jianliang Pei Yao Li Hongqiang Xie Jiaming Wu Huaizhong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期621-645,共25页
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ... The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses. 展开更多
关键词 Underground engineering modularized and parametric modeling finite element method complex geological structure cloud modeling
下载PDF
Potential evaluation of saline aquifers for the geological storage of carbon dioxide: A case study of saline aquifers in the Qian-5 member in northeastern Ordos Basin
14
作者 Yan Li Peng Li +4 位作者 Hong-jun Qu Gui-wen Wang Xiao-han Sun Chang Ma Tian-xing Yao 《China Geology》 CAS CSCD 2024年第1期12-25,共14页
The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an ef... The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an effective backup way to achieve carbon neutrality.In this case,the potential of saline aquifers for CO_(2) storage serves as a critical basis for subsequent geological storage project.This study calculated the technical control capacities of CO_(2) of the saline aquifers in the fifth member of the Shiqianfeng Formation(the Qian-5 member)based on the statistical analysis of the logging and the drilling and core data from more than 200 wells in the northeastern Ordos Basin,as well as the sedimentary facies,formation lithology,and saline aquifer development patterns of the Qian-5 member.The results show that(1)the reservoirs of saline aquifers in the Qian-5 member,which comprise distributary channel sand bodies of deltaic plains,feature low porosities and permeabilities;(2)The study area hosts three NNE-directed saline aquifer zones,where saline aquifers generally have a single-layer thickness of 3‒8 m and a cumulative thickness of 8‒24 m;(3)The saline aquifers of the Qian-5 member have a total technical control capacity of CO_(2) of 119.25×10^(6) t.With the largest scale and the highest technical control capacity(accounting for 61%of the total technical control capacity),the Jinjie-Yulin saline aquifer zone is an important prospect area for the geological storage of CO_(2) in the saline aquifers of the Qian-5 member in the study area. 展开更多
关键词 Carbon burial Carbon neutral CO_(2) storage in saline aquifer Distributary channel sand body Potential evaluation Technical control capacity CO_(2)geological storage engineering Ordos Basin
下载PDF
“OneGeology计划”及其在中国研究新进展 被引量:8
15
作者 逯永光 丁孝忠 +5 位作者 李廷栋 韩坤英 剧远景 庞健峰 丁伟翠 王振洋 《中国地质》 CAS CSCD 北大核心 2011年第3期799-808,共10页
"OneGeology计划"中文名为"同一个地质计划"、"地质一体化计划"或者"世界大地质计划",其目的是建立一个包含多个国际组织和国家的地质调查机构参与的全球数字地质图共享系统。该计划应用J2EE和... "OneGeology计划"中文名为"同一个地质计划"、"地质一体化计划"或者"世界大地质计划",其目的是建立一个包含多个国际组织和国家的地质调查机构参与的全球数字地质图共享系统。该计划应用J2EE和WebGIS技术,以网络为平台提供各种比例尺的地质图,参与该项目的国家通过发布基于开放地理信息系统协会(OGC)标准的网络服务并将访问接口注册到OneGeology门户网站实现地质图空间数据的共享。本文以中国新建成的1∶100万国际分幅地质图空间数据库为基础,应用"OneGeology计划"的有关标准和要求,进行数字地质图共享试点研究,为建立中国小比例尺数字地质图共享系统"OneGeology-China"奠定基础。 展开更多
关键词 地质图 同一个地质计划 网络地图服务/网络要素服务 地质图数据共享
下载PDF
KML在OneGeology和Google Earth之间的桥接作用浅析 被引量:3
16
作者 马小刚 《国土资源信息化》 2009年第5期9-12,共4页
为了促进全球范围内的地质图数据网络共享,国际地球科学联合会发起了OneGeology项目。目前该项目已经得到超过100个国家和地区和大量国际组织的参与,且已有40多个国家和地区在OneGeology项目的网站上登记了共享的地质图数据。由于这些... 为了促进全球范围内的地质图数据网络共享,国际地球科学联合会发起了OneGeology项目。目前该项目已经得到超过100个国家和地区和大量国际组织的参与,且已有40多个国家和地区在OneGeology项目的网站上登记了共享的地质图数据。由于这些数据源的服务器由各参与国的地质调查机构自己负责,OneGeology网站本身只通过一个数据接口OneGeology Portal提供对这些分布式数据源的浏览窗口。同时,另外一个重要的功能就是通过OneGeology Portal把选择的数据导出为KML文件,通过在Google Earth中打开该KML文件,可以把对应的数字地质图和和其他数据叠加浏览和分析,这也扩大了地质图数据的使用方式和服务目的。本文对KML文件在OneGeology和Google Earth之间的这种桥接作用做了分析并介绍了具体的操作过程。 展开更多
关键词 地学数据遗产 数字地质图 全球数据共享
下载PDF
Geology:2013年四川芦山地震:中国四川盆地山脉前缘盲断层产生的地震灾害
17
作者 徐文杰 Wang M M +1 位作者 Dong J Shaw J H 《国际地震动态》 2015年第3期2-2,共1页
2014年8月Geology杂志发表了一篇“2013年四川芦山地震:中国四川盆地山脉前缘盲断层产生的地震灾害”(The 2013Lushan earthquake:Implications for seismic hazards posed by the Range Front blind thrust in the Sichuan Basin,Ch... 2014年8月Geology杂志发表了一篇“2013年四川芦山地震:中国四川盆地山脉前缘盲断层产生的地震灾害”(The 2013Lushan earthquake:Implications for seismic hazards posed by the Range Front blind thrust in the Sichuan Basin,China)的文章. 展开更多
关键词 地震灾害 geology:2013 聚合板块 posed BLIND THRUST 研究难度 三维模型 反射剖面 汶川
下载PDF
Major Advances in the Study of the Precambrian Geology and Metallogenesis of the North China Craton:A Review 被引量:10
18
作者 ZHAO Lei ZHU Xiyan ZHAI Mingguo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第4期1122-1155,共34页
The North China Craton (NCC) is one of the most ancient cratons in the world and records a complex geological evolution since the early Precambrian. In addition to recording major geological events similar to those ... The North China Craton (NCC) is one of the most ancient cratons in the world and records a complex geological evolution since the early Precambrian. In addition to recording major geological events similar to those of other cratons, the NCC also exhibits some unique features such as multi- stage cratonization (late Archaean and Palaeoproterozoic) and long-term rifting during the Meso- Neoproterozoic. The NCC thus provides one of the best examples to address secular changes in geological history and metallogenic epochs in the evolving Earth. We summarize the major geological events and metallogenic systems of the NCC, so that the evolutionary patterns of the NCC can provide a better understanding of the Precambrian NCC and facilitate comparison of the NCC with other ancient continental blocks globally. The NCC experienced three major tectonic cycles during the Precambrian: (1) Neoarchaean crustal growth and stabilization; (2) Palaeoproterozoic rifting-subduction-accretion-collision with imprints of the Great Oxidation Event and (3) Meso-Neoproterozoic multi-stage rifting. A transition from primitive- to modern-style plate tectonics occurred during the early Precambrian to late Proterozoic and is evidenced by the major geological events. Accompanying these major geological events, three major metallogenic systems are identified: (1) the Archaean banded iron formation system; (2) Palaeoproterozoic Cu-Pb-Zn and Mg-B systems and (3) a Mesoproterozoic rare earth element-Fe- Pb-Zn system. The ore-deposit types in each of these metallogenic systems show distinct characteristics and tectonic affinities. 展开更多
关键词 North China Craton geological events METALLOGENESIS CRATONIZATION multi-stage rifting
下载PDF
The Status Quo and Outlook of Chinese Coal Geology and Exploration Technologies 被引量:4
19
作者 XU Shuishi CHENG Aiguo CAO Daiyong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第3期697-708,共12页
Coal is China's dominant energy resource. Coal geological exploration is the basis of sustainable development of coal industry. Since the late 1990s, the advances in Chinese coal geology and exploration techniques ha... Coal is China's dominant energy resource. Coal geological exploration is the basis of sustainable development of coal industry. Since the late 1990s, the advances in Chinese coal geology and exploration techniques have been shown in the following aspects. (1) The basic research of coal geology has changed from traditional geological studies to earth system science; (2) Breakthroughs have been achieved in integrated exploration techniques for coal resources; (3) Evaluation of coal and coalbed methane resources provides important basis for macropolicy making for China's coal industry and construction of large coal bases; (4) Significant advances have been made in using information technology in coal geological exploration and 3S (GPS, GIS, RS) technology. For the present and a period of time in the future, major tasks of Chinese coal geological technology are as follows: (1) solving resources replacement problem in eastern China and geological problems of deep mining; (2) solving problem of integrated coal exploration of complex regions in energy bases of central China, and resources problems induced by coal exploitation; (3) making efforts to enhance the level of geological research and resources evaluation of coal-accumulation basins in western China; (4) strengthening geological research of clean coal technologies; (5) strengthening geological research of the problems in modern coal mining and safe production; (6) promoting information technology in coal resources and major geological investigations. 展开更多
关键词 China coal geology coal geological exploration coal resources
下载PDF
OneGeology:Making Geological Map Data for the Earth Accessible 被引量:2
20
作者 Chloe Wrighton Catherine Pennington 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期278-278,共1页
OneGeology is an international initiative of the geological surveys of the world and a flagship project of the"International Year of Planet Earth".Its aim is to create a digital geological map of the world a... OneGeology is an international initiative of the geological surveys of the world and a flagship project of the"International Year of Planet Earth".Its aim is to create a digital geological map of the world and to make it available via the web to all.The target scale is l:l million but the project is pragmatic and accepts a range of scales and the best available data.To date, 102 countries are participating in the project and。 展开更多
关键词 GLOBAL geology MAP geologICAL surveys Onegeology
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部