The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed rive...The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed river terraces of its tributary,the Yixun River,provide excellent information for studying neotectonics and climate change.There are seven terraces in the lower reaches of the Yixun River,numbered T7-T1.The optically stimulated luminescence dating results of 23 samples show that terraces T7-T2 formed at 111.36±5.83 ka,78.20±4.45 ka,65.29±4.15 ka,56.44±3.07 ka,40.08±2.66 ka,and 13.14±0.76 ka,respectively.A comparison with the oxygen isotope curves of deep-sea sediments reveals that the sediment formation of each terrace corresponded to cold periods of marine isotope stages MIS 4 and MIS 2 and the relatively cold periods of MIS 5e,MIS 3,and MIS 1.Since the Late Pleistocene,the incision rate of the Yixun River has ranged from 0.371-1.740 mm/a.During the formation of T7-T6,T5-T4,T4-T3,and T3-T2,the incision rate was low.However,in the two stages during which T6-T5 and T2-T1 formed(13.14±0.76 ka to 0.58±0.08 ka and 10.79±0.64 ka to 0.16±0.01 ka),these rates reached 1.554 mm/a and 1.592-1.740 mm/a,respectively.At approximately 30 ka,the activity of the Langying Fault increased,leading to footwall uplift.The river gathered in the north of Langying to form the ancient Erdaowan Lake,which resulted in the drying of the river in the lower reaches of the Yixun River during the last glacial maximum without forming river deposits.In the Early Holocene,headward erosion in the lower reaches of the Yixun River was enhanced,which resulted in the disappearance of the lake,and incised meandering formed due to increased neotectonism.Based on the analyses of river incision and the formation of ancient lakes and incised meandering,it was inferred that there have been three periods of strong tectonism in the river basin since the Late Pleistocene.展开更多
Geomorphically, Huzhou, which is on the Yangtze River delta is characterized mainly by plains, with small hills. This paper presents a detailed analysis of the environmental geological hazards both natural and those i...Geomorphically, Huzhou, which is on the Yangtze River delta is characterized mainly by plains, with small hills. This paper presents a detailed analysis of the environmental geological hazards both natural and those incurred by human activities in different morphologic units. The authors point out that most of the regional environmental geological problems in the natural geologic-morphologic conditions, such as crustal stability, foundation of soft soil, soil waterlogging and soil erosion, have insignificant effects to the society, or related countermeasures of prevention and control have been adopted. But environmental geological problems incurred by human being's economic activities become more and more severe, for example, water and soil pollution and land subsidence in plain areas resulting from overexploitation of groundwater, and landslides, karst collapses and water and soil loss etc. caused by quarrying in hilly areas.展开更多
The Yellow River Basin(YRB) is characterized by active geological and tectonic processes, rapid geomorphological evolution, and distinct climatic diversity. Correspondingly, major disasters in the YRB are characterize...The Yellow River Basin(YRB) is characterized by active geological and tectonic processes, rapid geomorphological evolution, and distinct climatic diversity. Correspondingly, major disasters in the YRB are characterized by varied types,extensive distributions, and sudden occurrences. In addition, major disasters in the YRB usually evolve into disaster chains that cause severe consequences. Therefore, major disasters in the YRB destroy ecologies and environments and influence geological and ecological safety in the basin. This paper systematically reviews research on geological and surface processes, major disaster effects, and risk mitigation in the YRB, discusses the trends and challenges of relevant research, analyzes the key scientific problems that need to be solved, and suggests prospects for future research based on the earth system science concept. Themes of research that should be focused on include geological, surface and climatic processes in the YRB and their interlinking disaster gestation mechanisms;formation mechanisms and disaster chain evolutions of giant landslides in the upper reach of the YRB;mechanisms and disaster chain effects of loess water-soil disasters in the middle reach of the YRB;occurrence patterns and amplifying effects of giant flood chains in the lower reach of the YRB;and risk mitigations of major disasters in the YRB. Key scientific problems that need to be solved are as follows: how to reveal the geological, surface and climatic processes that are coupled and interlinked with gestation mechanisms of major disasters;how to clarify the mutual feedback effects between major disasters and ecology;and how to develop a human-environmental harmony-based integrated risk mitigation system for major disasters. Prospects for future studies that follow the earth system science concept include the following: highlighting interdisciplinary research to reveal the interlinked disaster gestation mechanisms of the geology, surface and climate in the YRB in the past, present, and future;forming theories to clarify the regional patterns, dynamic mechanisms, and mutual-feedback effects between disaster chains and ecology in the YRB on land and in rivers in the region;solving technological bottlenecks to develop assessment models and mitigation theories for integrated risks in the YRB by following the human-environment harmony concept;and finally, establishing a demonstratable application pattern characterized by "whole-basin coverage" and "zonal controls", thereby guaranteeing ecological and geological safety in the basin and providing scientific support for ecological conservation and high-quality development of the YRB.展开更多
基金supported by the National Natural Science Foundation of China(41977258)the China Geological Survey(DD20190310,DD20221761)the National Key R&D Program of China(2018YFC1504704).
文摘The Luan River is the most important water system in north-eastern Hebei Province,China and is located in the transitional zone of the Eastern Yan Mountains,North China Plain and Songliao Plain.The well-developed river terraces of its tributary,the Yixun River,provide excellent information for studying neotectonics and climate change.There are seven terraces in the lower reaches of the Yixun River,numbered T7-T1.The optically stimulated luminescence dating results of 23 samples show that terraces T7-T2 formed at 111.36±5.83 ka,78.20±4.45 ka,65.29±4.15 ka,56.44±3.07 ka,40.08±2.66 ka,and 13.14±0.76 ka,respectively.A comparison with the oxygen isotope curves of deep-sea sediments reveals that the sediment formation of each terrace corresponded to cold periods of marine isotope stages MIS 4 and MIS 2 and the relatively cold periods of MIS 5e,MIS 3,and MIS 1.Since the Late Pleistocene,the incision rate of the Yixun River has ranged from 0.371-1.740 mm/a.During the formation of T7-T6,T5-T4,T4-T3,and T3-T2,the incision rate was low.However,in the two stages during which T6-T5 and T2-T1 formed(13.14±0.76 ka to 0.58±0.08 ka and 10.79±0.64 ka to 0.16±0.01 ka),these rates reached 1.554 mm/a and 1.592-1.740 mm/a,respectively.At approximately 30 ka,the activity of the Langying Fault increased,leading to footwall uplift.The river gathered in the north of Langying to form the ancient Erdaowan Lake,which resulted in the drying of the river in the lower reaches of the Yixun River during the last glacial maximum without forming river deposits.In the Early Holocene,headward erosion in the lower reaches of the Yixun River was enhanced,which resulted in the disappearance of the lake,and incised meandering formed due to increased neotectonism.Based on the analyses of river incision and the formation of ancient lakes and incised meandering,it was inferred that there have been three periods of strong tectonism in the river basin since the Late Pleistocene.
文摘Geomorphically, Huzhou, which is on the Yangtze River delta is characterized mainly by plains, with small hills. This paper presents a detailed analysis of the environmental geological hazards both natural and those incurred by human activities in different morphologic units. The authors point out that most of the regional environmental geological problems in the natural geologic-morphologic conditions, such as crustal stability, foundation of soft soil, soil waterlogging and soil erosion, have insignificant effects to the society, or related countermeasures of prevention and control have been adopted. But environmental geological problems incurred by human being's economic activities become more and more severe, for example, water and soil pollution and land subsidence in plain areas resulting from overexploitation of groundwater, and landslides, karst collapses and water and soil loss etc. caused by quarrying in hilly areas.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.42041006&41790443)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(Grant No.XDA23090301).
文摘The Yellow River Basin(YRB) is characterized by active geological and tectonic processes, rapid geomorphological evolution, and distinct climatic diversity. Correspondingly, major disasters in the YRB are characterized by varied types,extensive distributions, and sudden occurrences. In addition, major disasters in the YRB usually evolve into disaster chains that cause severe consequences. Therefore, major disasters in the YRB destroy ecologies and environments and influence geological and ecological safety in the basin. This paper systematically reviews research on geological and surface processes, major disaster effects, and risk mitigation in the YRB, discusses the trends and challenges of relevant research, analyzes the key scientific problems that need to be solved, and suggests prospects for future research based on the earth system science concept. Themes of research that should be focused on include geological, surface and climatic processes in the YRB and their interlinking disaster gestation mechanisms;formation mechanisms and disaster chain evolutions of giant landslides in the upper reach of the YRB;mechanisms and disaster chain effects of loess water-soil disasters in the middle reach of the YRB;occurrence patterns and amplifying effects of giant flood chains in the lower reach of the YRB;and risk mitigations of major disasters in the YRB. Key scientific problems that need to be solved are as follows: how to reveal the geological, surface and climatic processes that are coupled and interlinked with gestation mechanisms of major disasters;how to clarify the mutual feedback effects between major disasters and ecology;and how to develop a human-environmental harmony-based integrated risk mitigation system for major disasters. Prospects for future studies that follow the earth system science concept include the following: highlighting interdisciplinary research to reveal the interlinked disaster gestation mechanisms of the geology, surface and climate in the YRB in the past, present, and future;forming theories to clarify the regional patterns, dynamic mechanisms, and mutual-feedback effects between disaster chains and ecology in the YRB on land and in rivers in the region;solving technological bottlenecks to develop assessment models and mitigation theories for integrated risks in the YRB by following the human-environment harmony concept;and finally, establishing a demonstratable application pattern characterized by "whole-basin coverage" and "zonal controls", thereby guaranteeing ecological and geological safety in the basin and providing scientific support for ecological conservation and high-quality development of the YRB.