It is justified that during geomagnetic storms the high voltage synchronous engines are being impacted by high current harmonics of even sequences powered by power transformer due to geo-induced high voltage currents ...It is justified that during geomagnetic storms the high voltage synchronous engines are being impacted by high current harmonics of even sequences powered by power transformer due to geo-induced high voltage currents flowed through the windings. Equivalent circuits of step down substation and HV synchronous motors are made for making it possible to consider a saturation of power transformer magnetic system and higher current harmonics availability in stator windings. Analytic expressions for higher current harmonics and extra capacity losses calculation in stator windings are received, as well as the calculation of induction torques allowing to denote a rate of geomagnetic processes impact on synchronous engine operation at various step down substation parameters.展开更多
地磁感应电流(geomagnetically induced currents,GICs)流入高压变压器会造成其铁心产生半波偏磁饱和,吸收的无功增加,导致整个电网的无功波动与电压降低,可能威胁电网的安全运行。以甘肃750 k V电网和330 k V电网GIC的计算数据为基础,...地磁感应电流(geomagnetically induced currents,GICs)流入高压变压器会造成其铁心产生半波偏磁饱和,吸收的无功增加,导致整个电网的无功波动与电压降低,可能威胁电网的安全运行。以甘肃750 k V电网和330 k V电网GIC的计算数据为基础,基于变压器GIC无功(GIC-Q)损耗系数K值算法,计算了750 k V和330 k V变压器的GIC无功损耗增量;在此基础上,利用电力系统综合分析程序和考虑全网GIC-Q同时增大、不同运行方式等因素的影响,采用牛顿法计算了甘肃750 kV电网和330 kV电网各节点GIC-Q波动的量值及其电压水平的指标;最后,研究了GIC-Q波动对750 kV电网和330 kV电网的节点电压的影响,以及两个电压等级电网之间GIC-Q和电压波动的相互影响。结果表明:整体上750 kV和330 kV电网节点GIC-Q和电压的波动不是非常大;与普通节点相比,750 kV终端变电站节点的GIC-Q和电压的波动相对大,是GIC侵害致灾风险相对高的站点。展开更多
文摘It is justified that during geomagnetic storms the high voltage synchronous engines are being impacted by high current harmonics of even sequences powered by power transformer due to geo-induced high voltage currents flowed through the windings. Equivalent circuits of step down substation and HV synchronous motors are made for making it possible to consider a saturation of power transformer magnetic system and higher current harmonics availability in stator windings. Analytic expressions for higher current harmonics and extra capacity losses calculation in stator windings are received, as well as the calculation of induction torques allowing to denote a rate of geomagnetic processes impact on synchronous engine operation at various step down substation parameters.
基金国家自然科学基金(批准号5117704541374189)+2 种基金科技部国际合作计划资助项目(2010DFA04680)the Fundamental Research Funds for the Central Universities(12QX11)The Special Funds for Co-construction Project of Beijing Education Commission(YB20101007901)~~
文摘地磁感应电流(geomagnetically induced currents,GICs)流入高压变压器会造成其铁心产生半波偏磁饱和,吸收的无功增加,导致整个电网的无功波动与电压降低,可能威胁电网的安全运行。以甘肃750 k V电网和330 k V电网GIC的计算数据为基础,基于变压器GIC无功(GIC-Q)损耗系数K值算法,计算了750 k V和330 k V变压器的GIC无功损耗增量;在此基础上,利用电力系统综合分析程序和考虑全网GIC-Q同时增大、不同运行方式等因素的影响,采用牛顿法计算了甘肃750 kV电网和330 kV电网各节点GIC-Q波动的量值及其电压水平的指标;最后,研究了GIC-Q波动对750 kV电网和330 kV电网的节点电压的影响,以及两个电压等级电网之间GIC-Q和电压波动的相互影响。结果表明:整体上750 kV和330 kV电网节点GIC-Q和电压的波动不是非常大;与普通节点相比,750 kV终端变电站节点的GIC-Q和电压的波动相对大,是GIC侵害致灾风险相对高的站点。