Global Digital Elevation Models (DEMs) have been utilized in various geomatics activities worldwide. Recently, there exist several available DEMs vary significantly in terms of spatial resolution and release dates. Th...Global Digital Elevation Models (DEMs) have been utilized in various geomatics activities worldwide. Recently, there exist several available DEMs vary significantly in terms of spatial resolution and release dates. This paper examines the reliability of eight recent global DEMs, namely the EarthEnv-D90, SRTM 1, SRTM 3, ASTER, GMTED2010, GLOBE, GTOPO30, and AW3D30, in two study areas in Egypt and Saudi Arabia representing different topography patterns. Known ground control points with measured accurate coordinates and precise elevations have been utilized in evaluating the performance of those DEMs. It has been concluded that such a judgment procedure should not be carried based on a single statistical measure. First, five statistical measures, specifically the range, standard deviation, correlation, kurtosis, and skewness, have been evaluated separately for each DEM’s errors. Then, a new reliability index is introduced based on the weighted average concept. The accomplished results show that global DEMs perform differently in different topography patterns. It has been concluded that the EarthEnv-D90 and SRTM1 models attain high reliability indexes in the Nile delta region that represents a flat topography, while the GMTED2010 and EarthEnv-DEM90 models came in the first places for the second study area, Makkah, which represents mountainous topography.展开更多
Geomatics is an interdisciplinary subject.Many disciplines have teaching demands in this field.A new course on“Geomatics Technology”has been suggested by the Weiyang College of Tsinghua University of China for the m...Geomatics is an interdisciplinary subject.Many disciplines have teaching demands in this field.A new course on“Geomatics Technology”has been suggested by the Weiyang College of Tsinghua University of China for the major of“Mathematical and Scientific Basic Science+Civil,Hydraulic and Marine Engineering”.This paper offers a data-led geomatics teaching mode,developing a customized teaching cloud platform,to explore the cross-integrated innovative teaching methods.Teachers and students can assign and submit assignments on this platform.The platform constitutes a data flow with the data download,data processing and result sharing.It encourages communication among students in various majors,grades and units using data as the medium,from data processing to application upstream and downstream.In the“Geomatics Technology”course,geospatial data has emerged as a vital element of the multidisciplinary approach.This kind of teaching mode has been used in the postgraduate remote sensing course offered by Tsinghua University’s Department of Civil Engineering and Construction Management.Furthermore,the mode will be used for the first time in the autumn semester of 2022 in the undergraduate teaching of Weiyang College and civil engineering,to offer a novel idea for the reform of courses linked to geospatial informatics.展开更多
This paper explored and discussed the cognition of informatization geomatics innovative talents cultivating laws and the basic principles and teaching system of informatization experiment teaching in the informatizati...This paper explored and discussed the cognition of informatization geomatics innovative talents cultivating laws and the basic principles and teaching system of informatization experiment teaching in the informatization experimental teaching innovation.展开更多
After briefly reviews the history of photogrammetry education in China, the development of undergraduate and graduate program, and the corresponding curricula design are analyzed by use of the data from Wuhan Universi...After briefly reviews the history of photogrammetry education in China, the development of undergraduate and graduate program, and the corresponding curricula design are analyzed by use of the data from Wuhan University in which the photogrammetry is awarded as the state-level key discipline. The academic educational program of photogrammetry in universities has trained students to perform tasks in all fields of the photogrammetric profession. In recent years, the nature of photogrammetry is changing and multidisciplinary geomatics are developing very rapidly, the educational program of photogrammetry has also changed in new concepts and structures to adapt very new technologies and the extension of the field. Finally, the prospect of photogrammetry education for the requirements of multidiseiplinary geomatics is proposed. The growing interest in fast and accurate 3D spatial data collection (such as city modeling and digital earth) results in the increasing need of photogrammetry as principal tool, photogrammetric courses are therefore requested to be upto date and to become one kind of the fundamental professional courses for university geomatics and remote sensing degree programs.展开更多
Throughout the mountainous part of Pakistan, Murree is considered to host the worst slide affected areas. Landslide risk assessment, mapping and analysis is a labour intensive and time consuming work by using conventi...Throughout the mountainous part of Pakistan, Murree is considered to host the worst slide affected areas. Landslide risk assessment, mapping and analysis is a labour intensive and time consuming work by using conventional field based methods. In this study Geomatics techniques have been applied on digital data such as satellite image and DEM, to investigate some possible causes of slope failure in selected landslide risk zones. The Remote sensing technology and GIS capabilities have been implemented using Landsat TM (30 m) multispectral data and Aster DEM (30 m). Satellite image and digital elevation model have been used to generate rock type map, aspect map, streams order map and slope map. The possible factors of slope failure for different zones of land sliding have been predicted by integrating information from all maps. It has been found that major causes of slope failure have been addressed, also it has been noted that water is the most dominant factor to cause land sliding in Murree area. Results are available for supporting hazard studies, disaster management and future development plans.展开更多
Climate change and population growth have led to the increase and/or intensification of flooding becoming a major issue. The objective of this study is to visualize flooding risk of municipalities at the intersection ...Climate change and population growth have led to the increase and/or intensification of flooding becoming a major issue. The objective of this study is to visualize flooding risk of municipalities at the intersection of the coastal sedimentary zone and the crystalline surface. The methodology adopted is based on geomatic approach, which involves documentary research, processing and assisted classification using remote sensing images and multi-criteria analysis of the Geographic Information System (GIS). Flooding risk is very high at 8.85% in Djidja, Toffo, Zè and Bonou municipalities. In other municipalities such as Agbangnizoun, Abomey, Bohicon, Za-Kpota and Cove, it is high of 46.85%. To the Southeast of the study area, it is located on the eastern and western banks of Oueme Valley. The medium risk represents 26.35% and is located in the municipalities of Ouinhi and Adjohoun. The other municipalities have a low rate of 17.95%. Risk modeling has made it possible to access the various levels of rising water that can cause flooding. Land-use planning decisions can be influenced by the results of this study.展开更多
We show a quantitative technique characterized by low numerical mediation for the reconstruction of temporal sequences of geophysical data of length L interrupted for a time ΔT where . The aim is to protect the infor...We show a quantitative technique characterized by low numerical mediation for the reconstruction of temporal sequences of geophysical data of length L interrupted for a time ΔT where . The aim is to protect the information acquired before and after the interruption by means of a numerical protocol with the lowest possible calculation weight. The signal reconstruction process is based on the synthesis of the low frequency signal extracted for subsampling (subsampling ∇Dirac = ΔT in phase with ΔT) with the high frequency signal recorded before the crash. The SYRec (SYnthetic REConstruction) method for simplicity and speed of calculation and for spectral response stability is particularly effective in the studies of high speed transient phenomena that develop in very perturbed fields. This operative condition is found a mental when almost immediate informational responses are required to the observation system. In this example we are dealing with geomagnetic data coming from an uw counter intrusion magnetic system. The system produces (on time) information about the transit of local magnetic singularities (magnetic perturbations with low spatial extension), originated by quasi-point form and kinematic sources (divers), in harbors magnetic underwater fields. The performances of stability of the SYRec system make it usable also in long and medium period of observation (activity of geomagnetic observatories).展开更多
The paper tackles the problem of reading singularities of the geomagnetic field in noisy underwater (UW) environments. In particular, we propose a novel metrological approach to measuring low-amplitude geomagnetic sig...The paper tackles the problem of reading singularities of the geomagnetic field in noisy underwater (UW) environments. In particular, we propose a novel metrological approach to measuring low-amplitude geomagnetic signals in hard noisy magnetic environments. This research action was launched to develop a detection system for enforcing the peripheral security of military bases (harbors/coasts and landbases) and for asymmetric warfare. The concept underlying this theory is the spatial stability in the temporal variations of the geomagnetic field in the observation area. The paper presents the development and deployment of a self-informed measurement system, in which the signal acquired from each sensor—observation node—is compared with the signal acquired by the adjacent ones. The effectiveness of this procedure relates to the inter-node (sensor-to-sensor) distance, L;this quantity should, on one hand, correlate the noise and, on the other hand, decorrelate the target signal. The paper presents the results obtained, that demonstrate the ability of self-informed systems to read weak magnetic signals even in the presence of very high noise in low-density ionic solutions (i.e. sea water).展开更多
文摘Global Digital Elevation Models (DEMs) have been utilized in various geomatics activities worldwide. Recently, there exist several available DEMs vary significantly in terms of spatial resolution and release dates. This paper examines the reliability of eight recent global DEMs, namely the EarthEnv-D90, SRTM 1, SRTM 3, ASTER, GMTED2010, GLOBE, GTOPO30, and AW3D30, in two study areas in Egypt and Saudi Arabia representing different topography patterns. Known ground control points with measured accurate coordinates and precise elevations have been utilized in evaluating the performance of those DEMs. It has been concluded that such a judgment procedure should not be carried based on a single statistical measure. First, five statistical measures, specifically the range, standard deviation, correlation, kurtosis, and skewness, have been evaluated separately for each DEM’s errors. Then, a new reliability index is introduced based on the weighted average concept. The accomplished results show that global DEMs perform differently in different topography patterns. It has been concluded that the EarthEnv-D90 and SRTM1 models attain high reliability indexes in the Nile delta region that represents a flat topography, while the GMTED2010 and EarthEnv-DEM90 models came in the first places for the second study area, Makkah, which represents mountainous topography.
基金Teaching Reform Project of Tsinghua University(No.DX0702)National Natural Science Foundation of China(No.41971379)。
文摘Geomatics is an interdisciplinary subject.Many disciplines have teaching demands in this field.A new course on“Geomatics Technology”has been suggested by the Weiyang College of Tsinghua University of China for the major of“Mathematical and Scientific Basic Science+Civil,Hydraulic and Marine Engineering”.This paper offers a data-led geomatics teaching mode,developing a customized teaching cloud platform,to explore the cross-integrated innovative teaching methods.Teachers and students can assign and submit assignments on this platform.The platform constitutes a data flow with the data download,data processing and result sharing.It encourages communication among students in various majors,grades and units using data as the medium,from data processing to application upstream and downstream.In the“Geomatics Technology”course,geospatial data has emerged as a vital element of the multidisciplinary approach.This kind of teaching mode has been used in the postgraduate remote sensing course offered by Tsinghua University’s Department of Civil Engineering and Construction Management.Furthermore,the mode will be used for the first time in the autumn semester of 2022 in the undergraduate teaching of Weiyang College and civil engineering,to offer a novel idea for the reform of courses linked to geospatial informatics.
文摘This paper explored and discussed the cognition of informatization geomatics innovative talents cultivating laws and the basic principles and teaching system of informatization experiment teaching in the informatization experimental teaching innovation.
文摘After briefly reviews the history of photogrammetry education in China, the development of undergraduate and graduate program, and the corresponding curricula design are analyzed by use of the data from Wuhan University in which the photogrammetry is awarded as the state-level key discipline. The academic educational program of photogrammetry in universities has trained students to perform tasks in all fields of the photogrammetric profession. In recent years, the nature of photogrammetry is changing and multidisciplinary geomatics are developing very rapidly, the educational program of photogrammetry has also changed in new concepts and structures to adapt very new technologies and the extension of the field. Finally, the prospect of photogrammetry education for the requirements of multidiseiplinary geomatics is proposed. The growing interest in fast and accurate 3D spatial data collection (such as city modeling and digital earth) results in the increasing need of photogrammetry as principal tool, photogrammetric courses are therefore requested to be upto date and to become one kind of the fundamental professional courses for university geomatics and remote sensing degree programs.
文摘Throughout the mountainous part of Pakistan, Murree is considered to host the worst slide affected areas. Landslide risk assessment, mapping and analysis is a labour intensive and time consuming work by using conventional field based methods. In this study Geomatics techniques have been applied on digital data such as satellite image and DEM, to investigate some possible causes of slope failure in selected landslide risk zones. The Remote sensing technology and GIS capabilities have been implemented using Landsat TM (30 m) multispectral data and Aster DEM (30 m). Satellite image and digital elevation model have been used to generate rock type map, aspect map, streams order map and slope map. The possible factors of slope failure for different zones of land sliding have been predicted by integrating information from all maps. It has been found that major causes of slope failure have been addressed, also it has been noted that water is the most dominant factor to cause land sliding in Murree area. Results are available for supporting hazard studies, disaster management and future development plans.
文摘Climate change and population growth have led to the increase and/or intensification of flooding becoming a major issue. The objective of this study is to visualize flooding risk of municipalities at the intersection of the coastal sedimentary zone and the crystalline surface. The methodology adopted is based on geomatic approach, which involves documentary research, processing and assisted classification using remote sensing images and multi-criteria analysis of the Geographic Information System (GIS). Flooding risk is very high at 8.85% in Djidja, Toffo, Zè and Bonou municipalities. In other municipalities such as Agbangnizoun, Abomey, Bohicon, Za-Kpota and Cove, it is high of 46.85%. To the Southeast of the study area, it is located on the eastern and western banks of Oueme Valley. The medium risk represents 26.35% and is located in the municipalities of Ouinhi and Adjohoun. The other municipalities have a low rate of 17.95%. Risk modeling has made it possible to access the various levels of rising water that can cause flooding. Land-use planning decisions can be influenced by the results of this study.
文摘We show a quantitative technique characterized by low numerical mediation for the reconstruction of temporal sequences of geophysical data of length L interrupted for a time ΔT where . The aim is to protect the information acquired before and after the interruption by means of a numerical protocol with the lowest possible calculation weight. The signal reconstruction process is based on the synthesis of the low frequency signal extracted for subsampling (subsampling ∇Dirac = ΔT in phase with ΔT) with the high frequency signal recorded before the crash. The SYRec (SYnthetic REConstruction) method for simplicity and speed of calculation and for spectral response stability is particularly effective in the studies of high speed transient phenomena that develop in very perturbed fields. This operative condition is found a mental when almost immediate informational responses are required to the observation system. In this example we are dealing with geomagnetic data coming from an uw counter intrusion magnetic system. The system produces (on time) information about the transit of local magnetic singularities (magnetic perturbations with low spatial extension), originated by quasi-point form and kinematic sources (divers), in harbors magnetic underwater fields. The performances of stability of the SYRec system make it usable also in long and medium period of observation (activity of geomagnetic observatories).
文摘The paper tackles the problem of reading singularities of the geomagnetic field in noisy underwater (UW) environments. In particular, we propose a novel metrological approach to measuring low-amplitude geomagnetic signals in hard noisy magnetic environments. This research action was launched to develop a detection system for enforcing the peripheral security of military bases (harbors/coasts and landbases) and for asymmetric warfare. The concept underlying this theory is the spatial stability in the temporal variations of the geomagnetic field in the observation area. The paper presents the development and deployment of a self-informed measurement system, in which the signal acquired from each sensor—observation node—is compared with the signal acquired by the adjacent ones. The effectiveness of this procedure relates to the inter-node (sensor-to-sensor) distance, L;this quantity should, on one hand, correlate the noise and, on the other hand, decorrelate the target signal. The paper presents the results obtained, that demonstrate the ability of self-informed systems to read weak magnetic signals even in the presence of very high noise in low-density ionic solutions (i.e. sea water).