为解决现有翼型几何参数化描述方法优化设计效率低、计算工作量大的问题,提出了一种基于深度学习的翼型参数化建模方法。该方法以伊利诺伊大学厄巴纳-香槟分校(University of Illinois at Urbana-Champaign,UIUC)翼型数据库中翼型上下...为解决现有翼型几何参数化描述方法优化设计效率低、计算工作量大的问题,提出了一种基于深度学习的翼型参数化建模方法。该方法以伊利诺伊大学厄巴纳-香槟分校(University of Illinois at Urbana-Champaign,UIUC)翼型数据库中翼型上下表面坐标点转化的翼型二维图像作为输入,首先使用卷积运算提取大量翼型图像的几何特征,然后通过多层感知机对提取的几何特征进行分类和压缩,将翼型形状压缩成若干个简化的拟合参数,最后通过解码器恢复翼型图像并输出翼型上下表面的点坐标。在此基础上,探讨了拟合参数数量对翼型几何精度的影响,确定了含6个拟合参数的卷积神经网络(convolutional neural network,CNN)结构,并基于计算流体力学数值仿真验证了所提出方法的拟合精度。最后,开发了可视化翼型几何设计软件,实现了拟合参数的调整与修正,并分析了各拟合参数对翼型形状的影响规律。结果表明,6个拟合参数均会对翼型形状产生全局影响,单独或联合调整6个拟合参数可获得新的翼型设计空间。研究结果可为翼型的优化设计提供技术支持与理论参考。展开更多
现有的基于BERT(bidirectional encoder representations from transformers)的方面级情感分析模型仅使用BERT最后一层隐藏层的输出,忽略BERT中间隐藏层的语义信息,存在信息利用不充分的问题,提出一种融合BERT中间隐藏层的方面级情感分...现有的基于BERT(bidirectional encoder representations from transformers)的方面级情感分析模型仅使用BERT最后一层隐藏层的输出,忽略BERT中间隐藏层的语义信息,存在信息利用不充分的问题,提出一种融合BERT中间隐藏层的方面级情感分析模型。首先,将评论和方面信息拼接为句子对输入BERT模型,通过BERT的自注意力机制建立评论与方面信息的联系;其次,构建门控卷积网络(gated convolutional neural network,GCNN)对BERT所有隐藏层输出的词向量矩阵进行特征提取,并将提取的特征进行最大池化、拼接得到特征序列;然后,使用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络对特征序列进行融合,编码BERT不同隐藏层的信息;最后,引入注意力机制,根据特征与方面信息的相关程度赋予权值。在公开的SemEval2014 Task4评论数据集上的实验结果表明:所提模型在准确率和F 1值两种评价指标上均优于BERT、CapsBERT(capsule BERT)、BERT-PT(BERT post train)、BERT-LSTM(BERT long and short-term memory)等对比模型,具有较好的情感分类效果。展开更多
针对低层特征对图像内容描述不够精确而导致现场勘验图像(crime scene investigation,CSI)分类准确率低的不足,结合特征融合与几何短语池化提出了一种高效图像特征编码和融合方法。首先,分别提取图像密集SIFT和边缘SIFT特征并进行融合;...针对低层特征对图像内容描述不够精确而导致现场勘验图像(crime scene investigation,CSI)分类准确率低的不足,结合特征融合与几何短语池化提出了一种高效图像特征编码和融合方法。首先,分别提取图像密集SIFT和边缘SIFT特征并进行融合;然后,采用几何短语池化技术对融合特征进行编码,并利用多尺度空间金字塔匹配产生包含空间位置信息的稀疏编码特征;最后,通过迁移学习提取图像深度卷积特征,与编码后的特征融合成最终图像特征,并采用支持向量机对图像进行分类。实验结果表明,与经典的图像分类算法相比,所提方法更适合于现场勘验图像分类并取得了较高的分类准确率。展开更多
文摘为解决现有翼型几何参数化描述方法优化设计效率低、计算工作量大的问题,提出了一种基于深度学习的翼型参数化建模方法。该方法以伊利诺伊大学厄巴纳-香槟分校(University of Illinois at Urbana-Champaign,UIUC)翼型数据库中翼型上下表面坐标点转化的翼型二维图像作为输入,首先使用卷积运算提取大量翼型图像的几何特征,然后通过多层感知机对提取的几何特征进行分类和压缩,将翼型形状压缩成若干个简化的拟合参数,最后通过解码器恢复翼型图像并输出翼型上下表面的点坐标。在此基础上,探讨了拟合参数数量对翼型几何精度的影响,确定了含6个拟合参数的卷积神经网络(convolutional neural network,CNN)结构,并基于计算流体力学数值仿真验证了所提出方法的拟合精度。最后,开发了可视化翼型几何设计软件,实现了拟合参数的调整与修正,并分析了各拟合参数对翼型形状的影响规律。结果表明,6个拟合参数均会对翼型形状产生全局影响,单独或联合调整6个拟合参数可获得新的翼型设计空间。研究结果可为翼型的优化设计提供技术支持与理论参考。
文摘现有的基于BERT(bidirectional encoder representations from transformers)的方面级情感分析模型仅使用BERT最后一层隐藏层的输出,忽略BERT中间隐藏层的语义信息,存在信息利用不充分的问题,提出一种融合BERT中间隐藏层的方面级情感分析模型。首先,将评论和方面信息拼接为句子对输入BERT模型,通过BERT的自注意力机制建立评论与方面信息的联系;其次,构建门控卷积网络(gated convolutional neural network,GCNN)对BERT所有隐藏层输出的词向量矩阵进行特征提取,并将提取的特征进行最大池化、拼接得到特征序列;然后,使用双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络对特征序列进行融合,编码BERT不同隐藏层的信息;最后,引入注意力机制,根据特征与方面信息的相关程度赋予权值。在公开的SemEval2014 Task4评论数据集上的实验结果表明:所提模型在准确率和F 1值两种评价指标上均优于BERT、CapsBERT(capsule BERT)、BERT-PT(BERT post train)、BERT-LSTM(BERT long and short-term memory)等对比模型,具有较好的情感分类效果。
文摘针对低层特征对图像内容描述不够精确而导致现场勘验图像(crime scene investigation,CSI)分类准确率低的不足,结合特征融合与几何短语池化提出了一种高效图像特征编码和融合方法。首先,分别提取图像密集SIFT和边缘SIFT特征并进行融合;然后,采用几何短语池化技术对融合特征进行编码,并利用多尺度空间金字塔匹配产生包含空间位置信息的稀疏编码特征;最后,通过迁移学习提取图像深度卷积特征,与编码后的特征融合成最终图像特征,并采用支持向量机对图像进行分类。实验结果表明,与经典的图像分类算法相比,所提方法更适合于现场勘验图像分类并取得了较高的分类准确率。