Based upon a generalized variational principle, which relaxed the inter element continuity requirements, a novel refined hybrid Mindlin plate element is developed, its non linear element stiffness matrices are decom...Based upon a generalized variational principle, which relaxed the inter element continuity requirements, a novel refined hybrid Mindlin plate element is developed, its non linear element stiffness matrices are decomposed into a series of matrices with respect to the assumed strain modes. The formulation presented in this paper is different from any other non linear mixed/hybrid element formulation all successful experience of linear hybrid formulation is absorbed into the formulation(adding non conforming modes and realizing orthogonalization) Numerical results show that the present approach is more effective than any other non linear hybrid element formulation over the accuracy and computational efficiency. In addition, non conforming modes can also overcome the shear locking effect.展开更多
The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical...The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical tool for the characterization and construction of images in Geometrical Optics. The Sympletic Map constitutes a Lie Group, with an algebra associated: the Lie Algebra. In general, the SM can be expressed as an infinite series, where each term corresponds to different contributions produced by the optical devices that constitute the optical system (lenses, apertures, bandwidth cutoff, etc.). The level of correction to be performed on the image to recover the original object is clear and controllable by SM. This formalism can be extended easily to physical optics to describe diffraction and interference phenomena.展开更多
In this paper , through the discrim ination of Farey sequence in the forced Brusselator withweak coupling , it is proved that there is a topological translation fro m a nonlinear differen tial system ( limit cycle)...In this paper , through the discrim ination of Farey sequence in the forced Brusselator withweak coupling , it is proved that there is a topological translation fro m a nonlinear differen tial system ( limit cycle) to the circle m ap .展开更多
The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to en...The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters.展开更多
This paper presents eight-node solid-shell elements for geometric non-linear analyze of piezoelectric structures. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc mod...This paper presents eight-node solid-shell elements for geometric non-linear analyze of piezoelectric structures. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger-Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid ele- ment, a hybrid-stress solid-shell element is formulated. The presented finite shell element is able to model arbitrary curved shell structures. Non-linear numerical examples demonstrate the ability of the proposed model to analyze nonlinear piezoelectric devices.展开更多
文摘Based upon a generalized variational principle, which relaxed the inter element continuity requirements, a novel refined hybrid Mindlin plate element is developed, its non linear element stiffness matrices are decomposed into a series of matrices with respect to the assumed strain modes. The formulation presented in this paper is different from any other non linear mixed/hybrid element formulation all successful experience of linear hybrid formulation is absorbed into the formulation(adding non conforming modes and realizing orthogonalization) Numerical results show that the present approach is more effective than any other non linear hybrid element formulation over the accuracy and computational efficiency. In addition, non conforming modes can also overcome the shear locking effect.
文摘The use of signals of different frequencies determines the geometrical deviation with respect to the optical axes of a given beam. This angle can be determined by Sympletic Map (SM), a powerful and simple mathematical tool for the characterization and construction of images in Geometrical Optics. The Sympletic Map constitutes a Lie Group, with an algebra associated: the Lie Algebra. In general, the SM can be expressed as an infinite series, where each term corresponds to different contributions produced by the optical devices that constitute the optical system (lenses, apertures, bandwidth cutoff, etc.). The level of correction to be performed on the image to recover the original object is clear and controllable by SM. This formalism can be extended easily to physical optics to describe diffraction and interference phenomena.
文摘In this paper , through the discrim ination of Farey sequence in the forced Brusselator withweak coupling , it is proved that there is a topological translation fro m a nonlinear differen tial system ( limit cycle) to the circle m ap .
基金financially supported by the National Basic Research Program of China(Grant No.2011CB013702)the National Natural Science Foundation of China(Grant No.50979113).1
文摘The maximum bending moment or curvature in the neighborhood of the touch down point (TDP) and the maximum tension at the top are two key parameters to be controlled during deepwater J-lay installation in order to ensure the safety of the pipe-laying operation and the normal operation of the pipelines. In this paper, the non-linear governing differential equation for getting the two parameters during J-lay installation is proposed and solved by use of singular perturbation technique, from which the asymptotic expression of stiffened catenary is obtained and the theoretical expression of its static geometric configuration as well as axial tension and bending moment is derived. Finite element results are applied to verify this method. Parametric investigation is conducted to analyze the influences of the seabed slope, unit weight, flexural stiffness, water depth, and the pipe-laying tower angle on the maximum tension and moment of pipeline by this method, and the results show how to control the installation process by changing individual parameters.
基金Supported by the National Natural Science Foundation of China (Grant No. 10672111)the Major Project of the Natural Science Foundation of Jiangsu Province (Grant No. BK2006725)
文摘This paper presents eight-node solid-shell elements for geometric non-linear analyze of piezoelectric structures. To subdue shear, trapezoidal and thickness locking, the assumed natural strain method and an ad hoc modified generalized laminate stiffness matrix are employed. With the generalized stresses arising from the modified generalized laminate stiffness matrix assumed to be independent from the ones obtained from the displacement, an extended Hellinger-Reissner functional can be derived. By choosing the assumed generalized stresses similar to the assumed stresses of a previous solid ele- ment, a hybrid-stress solid-shell element is formulated. The presented finite shell element is able to model arbitrary curved shell structures. Non-linear numerical examples demonstrate the ability of the proposed model to analyze nonlinear piezoelectric devices.