期刊文献+
共找到19,713篇文章
< 1 2 250 >
每页显示 20 50 100
带线性红利和干扰的复合Poisson-Geometric风险模型的破产问题
1
作者 侯致武 乔克林 高磊 《贵州大学学报(自然科学版)》 2024年第6期8-13,共6页
考虑了常利力环境下,包含线性红利、随机干扰和随机保费的复合P-G风险模型。通过应用全期望公式,推导出该模型的Gerber-Shiu函数及破产概率的更新方程。在不考虑分红且保费额和索赔额均服从指数分布时,进一步得到了破产概率所满足的具... 考虑了常利力环境下,包含线性红利、随机干扰和随机保费的复合P-G风险模型。通过应用全期望公式,推导出该模型的Gerber-Shiu函数及破产概率的更新方程。在不考虑分红且保费额和索赔额均服从指数分布时,进一步得到了破产概率所满足的具体微分方程,并求解得到了其解析表达式。通过数值实验,系统分析了多个关键因素对破产概率的具体影响,所得结论与保险公司的实际经营情况相吻合。 展开更多
关键词 复合POISSON-geometric过程 线性红利 GERBER-SHIU函数 破产概率
下载PDF
Engineering of geometrical configurations in dual-atom catalysts for electrocatalytic applications
2
作者 Tao Zhang Yifan Liu +3 位作者 Liang Xue Jingwen Sun Pan Xiong Junwu Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期273-287,共15页
Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,... Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications. 展开更多
关键词 Dual-atom catalysts geometrical configurations HOMONUCLEAR HETERONUCLEAR ELECTROCATALYSIS
下载PDF
Geometric properties of the first singlet S-wave excited state of two-electron atoms near the critical nuclear charge
3
作者 Tong Chen Sanjiang Yang +2 位作者 Wanping Zhou Xuesong Mei d Haoxue Qiao 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期213-219,共7页
The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basi... The geometric structure parameters and radial density distribution of 1s2s1S excited state of the two-electron atomic system near the critical nuclear charge Z_(c)were calculated in detail under tripled Hylleraas basis set.Contrary to the localized behavior observed in the ground and the doubly excited 2p^(23)Pe states,for this state our results identify that while the behavior of the inner electron increasingly resembles that of a hydrogen-like atomic system,the outer electron in the excited state exhibits diffused hydrogen-like character and becomes perpendicular to the inner electron as nuclear charge Z approaches Z_(c).This study provides insights into the electronic structure and stability of the two-electron system in the vicinity of the critical nuclear charge. 展开更多
关键词 critical nuclear charge two-electron atomic system geometric structure density distribution
下载PDF
Modeling Geometrically Nonlinear FG Plates: A Fast and Accurate Alternative to IGA Method Based on Deep Learning
4
作者 Se Li Tiantang Yu Tinh Quoc Bui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2793-2808,共16页
Isogeometric analysis (IGA) is known to showadvanced features compared to traditional finite element approaches.Using IGA one may accurately obtain the geometrically nonlinear bending behavior of plates with functiona... Isogeometric analysis (IGA) is known to showadvanced features compared to traditional finite element approaches.Using IGA one may accurately obtain the geometrically nonlinear bending behavior of plates with functionalgrading (FG). However, the procedure is usually complex and often is time-consuming. We thus put forward adeep learning method to model the geometrically nonlinear bending behavior of FG plates, bypassing the complexIGA simulation process. A long bidirectional short-term memory (BLSTM) recurrent neural network is trainedusing the load and gradient index as inputs and the displacement responses as outputs. The nonlinear relationshipbetween the outputs and the inputs is constructed usingmachine learning so that the displacements can be directlyestimated by the deep learning network. To provide enough training data, we use S-FSDT Von-Karman IGA andobtain the displacement responses for different loads and gradient indexes. Results show that the recognition erroris low, and demonstrate the feasibility of deep learning technique as a fast and accurate alternative to IGA formodeling the geometrically nonlinear bending behavior of FG plates. 展开更多
关键词 FG plates geometric nonlinearity deep learning BLSTM IGA S-FSDT
下载PDF
Establishment of a Geometric Geoid Model and Evaluation of the EGM2008 and EIGEN-6CA Models over the Dakar-Thies-Mbour Triangle in Senegal
5
作者 Diogoye Diouf Moustapha Gning Tine +1 位作者 Sokhna Mou Mapeinda Gueye Serigne Saliou Fall 《International Journal of Geosciences》 CAS 2024年第11期927-939,共13页
High-accuracy geoid determination is an essential goal that many groups of scientists and countries are striving to achieve. Techniques for determining geoid models have evolved over time. Unfortunately, this all-impo... High-accuracy geoid determination is an essential goal that many groups of scientists and countries are striving to achieve. Techniques for determining geoid models have evolved over time. Unfortunately, this all-important determination requires relatively substantial technical and financial resources, depending on the type of geoid to be determined. This situation justifies the inadequacy, and sometimes absence, of accurate geoid models in many countries, despite the new challenges of altimetric positioning using space or satellite positioning techniques. This study focuses on the establishment of a geometric geoid model using simplistic techniques that are accessible and applicable in restricted or wide areas, with or without gravimetric data. The study was applied to the Dakar-Thiès-Mbour triangle, the two regions in the extreme west of Senegal that are home to the most infrastructure projects with the highest socio-economic stakes, as well as mines currently being exploited, and therefore the highest stakes in terms of positioning. This study also enabled us to assess the accuracy of a number of global field models in Senegal, which are used by some professionals for altimetric positioning using Global Positioning Satellite Systems (GNSS) in the absence of a local geoid model. The estimated geoid model is based on the determination of undulation at various sample points in the study area. To this end, a campaign of GNSS observations and direct levelling was carried out on the various points spread across the study area. These measurements were then used to determine the undulation at each point. Bilinear interpolation was used to deduce the undulations throughout the study area, based on the altimeter conversion grid. This grid was evaluated using GPS/level control points. 展开更多
关键词 Model GEOID geometric Levelling GNSS UNDULATION EGM2008 EIGEN-6CA
下载PDF
Sliding and damming properties of granular debris with different geometric configurations and grain size distributions
6
作者 HE Ligeng TAN Longmeng +2 位作者 YANG Xingguo ZHOU Jiawen LIAO Haimei 《Journal of Mountain Science》 SCIE CSCD 2024年第3期932-951,共20页
Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of g... Granular debris plays a significant role in determining damming deposit characteristics. An indepth understanding of how variations in grain size distribution(GSD) and geometric configurations impact the behavior of granular debris during the occurrence of granular debris is essential for precise assessment and effective mitigation of landslide hazards in mountainous terrains. This research aims to investigate the impact of GSD and geometric configurations on sliding and damming properties through laboratory experiments. The geometric configurations were categorized into three categories based on the spatial distribution of maximum volume: located at the front(Type Ⅰ), middle(Type Ⅱ), and rear(Type Ⅲ) of the granular debris. Our experimental findings highlight that the sliding and damming processes primarily depend on the interaction among the geometric configuration, grain size, and GSD in granular debris. Different sliding and damming mechanisms across various geometric configurations induce variability in motion parameters and deposition patterns. For Type Ⅰ configurations, the front debris functions as the critical and primary driving component, with energy dissipation primarily occurring through inter-grain interactions. In contrast, Type Ⅱ configurations feature the middle debris as the dominant driving component, experiencing hindrance from the front debris and propulsion from the rear, leading to complex alterations in sliding motion. Here, energy dissipation arises from a combination of inter-grain and grain-substrate interactions. Lastly, in Type Ⅲ configurations, both the middle and rear debris serve as the main driving components, with the rear sliding debris impeded by the front. In this case, energy dissipation predominantly results from grainsubstrate interaction. Moreover, we have quantitatively demonstrated that the inverse grading in damming deposits, where coarse grain moves upward and fine grain moves downward, is primarily caused by grain sorting due to collisions among the grains and between the grain and the base. The impact of grain on the horizontal channel further aids grain sorting and contributes to inverse grading. The proposed classification of three geometric configurations in our study enhances the understanding of damming properties from the view of mechanism, which provides valuable insights for related study about damming granular debris. 展开更多
关键词 Landslide dam geometric configuration Energy dissipation Inverse grading Physical experiment
下载PDF
Iterative Subregion Correction Preconditioners with Adaptive Tolerance for Problems with Geometrically Localized Stiffness
7
作者 Michael Franco Per-Olof Persson Will Pazner 《Communications on Applied Mathematics and Computation》 EI 2024年第2期811-836,共26页
We present a class of preconditioners for the linear systems resulting from a finite element or discontinuous Galerkin discretizations of advection-dominated problems.These preconditioners are designed to treat the ca... We present a class of preconditioners for the linear systems resulting from a finite element or discontinuous Galerkin discretizations of advection-dominated problems.These preconditioners are designed to treat the case of geometrically localized stiffness,where the convergence rates of iterative methods are degraded in a localized subregion of the mesh.Slower convergence may be caused by a number of factors,including the mesh size,anisotropy,highly variable coefficients,and more challenging physics.The approach taken in this work is to correct well-known preconditioners such as the block Jacobi and the block incomplete LU(ILU)with an adaptive inner subregion iteration.The goal of these preconditioners is to reduce the number of costly global iterations by accelerating the convergence in the stiff region by iterating on the less expensive reduced problem.The tolerance for the inner iteration is adaptively chosen to minimize subregion-local work while guaranteeing global convergence rates.We present analysis showing that the convergence of these preconditioners,even when combined with an adaptively selected tolerance,is independent of discretization parameters(e.g.,the mesh size and diffusion coefficient)in the subregion.We demonstrate significant performance improvements over black-box preconditioners when applied to several model convection-diffusion problems.Finally,we present performance results of several variations of iterative subregion correction preconditioners applied to the Reynolds number 2.25×10^(6)fluid flow over the NACA 0012 airfoil,as well as massively separated flow at 30°angle of attack. 展开更多
关键词 Subregion correction Nested Krylov geometrically localized stiffness
下载PDF
Geometric Error Identification of Gantry-Type CNC Machine Tool Based on Multi-Station Synchronization Laser Tracers
8
作者 Jun Zha Huijie Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期150-162,共13页
Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracer... Laser tracers are a three-dimensional coordinate measurement system that are widely used in industrial measurement.We propose a geometric error identification method based on multi-station synchronization laser tracers to enable the rapid and high-precision measurement of geometric errors for gantry-type computer numerical control(CNC)machine tools.This method also improves on the existing measurement efficiency issues in the single-base station measurement method and multi-base station time-sharing measurement method.We consider a three-axis gantry-type CNC machine tool,and the geometric error mathematical model is derived and established based on the combination of screw theory and a topological analysis of the machine kinematic chain.The four-station laser tracers position and measurement points are realized based on the multi-point positioning principle.A self-calibration algorithm is proposed for the coordinate calibration process of a laser tracer using the Levenberg-Marquardt nonlinear least squares method,and the geometric error is solved using Taylor’s first-order linearization iteration.The experimental results show that the geometric error calculated based on this modeling method is comparable to the results from the Etalon laser tracer.For a volume of 800 mm×1000 mm×350 mm,the maximum differences of the linear,angular,and spatial position errors were 2.0μm,2.7μrad,and 12.0μm,respectively,which verifies the accuracy of the proposed algorithm.This research proposes a modeling method for the precise measurement of errors in machine tools,and the applied nature of this study also makes it relevant both to researchers and those in the industrial sector. 展开更多
关键词 Multi-point positioning Multi-station synchronization CNC machine tool geometric error Error separation
下载PDF
Quantification of grain boundary effects on the geometrically necessary dislocation density evolution and strain hardening of polycrystalline Mg-4Al using in situ tensile testing in scanning electron microscope and HR-EBSD
9
作者 Eunji Song Mohsen Taheri Andani Amit Misra 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1815-1829,共15页
In situ tensile testing in a scanning electron microscope(SEM)in conjunction with high-resolution electron backscatter diffraction(HR-EBSD)under load was used to characterize the evolution of geometrically necessary d... In situ tensile testing in a scanning electron microscope(SEM)in conjunction with high-resolution electron backscatter diffraction(HR-EBSD)under load was used to characterize the evolution of geometrically necessary dislocation(GND)densities at individual grain boundaries as a function of applied strain in a polycrystalline Mg-4Al alloy.The increase in GND density was investigated at plastic strains of 0%,0.6%,2.2%,3.3% from the area including 76 grains and correlated with(i)geometric compatibility between slip systems across grain boundaries,and(ii)plastic incompatibility.We develop expressions for the grain boundary GND density evolution as a function of plastic strain and plastic incompatibility,from which uniaxial tensile stress-strain response of polycrystalline Mg-4Al are computed and compared with experimental measurement.The findings in this study contribute to understanding the mechanisms governing the strain hardening response of single-phase polycrystalline alloys and more reliable prediction of mechanical behaviors in diverse microstructures. 展开更多
关键词 Mg-Al alloys Grain boundaries geometrically necessary dislocations Strain gradient plasticity HR-EBSD
下载PDF
Influence of manufacturing process-induced geometrical defects on the energy absorption capacity of polymer lattice structures
10
作者 Alexandre Riot Enrico Panettieri +1 位作者 Antonio Cosculluela Marco Montemurro 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期47-59,共13页
Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications r... Modern additive manufacturing processes enable fabricating architected cellular materials of complex shape,which can be used for different purposes.Among them,lattice structures are increasingly used in applications requiring a compromise among lightness and suited mechanical properties,like improved energy absorption capacity and specific stiffness-to-weight and strength-to-weight ratios.A dedicated modeling strategy to assess the energy absorption capacity of lattice structures under uni-axial compression loading is presented in this work.The numerical model is developed in a non-linear framework accounting for the strain rate effect on the mechanical responses of the lattice structure.Four geometries,i.e.,cubic body centered cell,octet cell,rhombic-dodecahedron and truncated cuboctahedron 2+,are investigated.Specifically,the influence of the relative density of the representative volume element of each geometry,the strain-rate dependency of the bulk material and of the presence of the manufacturing process-induced geometrical imperfections on the energy absorption capacity of the lattice structure is investigated.The main outcome of this study points out the importance of correctly integrating geometrical imperfections into the modeling strategy when shock absorption applications are aimed for. 展开更多
关键词 Lattice structures Architected cellular materials Dynamic simulation Energy absorption geometrical imperfection Additive manufacturing
下载PDF
Geometric regulation of collective cell tangential ordering migration
11
作者 Hao Dong Yuming Zhou +8 位作者 Xuehe Ma Junfang Liu Fulin Xing Jianyu Yang Qiushuo Sun Qingsong Hu Fen Hu Leiting Pan Jingjun Xu 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第2期94-103,共10页
Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rota... Collective cell migration is a coordinated movement of multi-cell systems essential for various processes throughout life.The collective motions often occur under spatial restrictions,hallmarked by the collective rotation of epithelial cells confined in circular substrates.Here,we aim to explore how geometric shapes of confinement regulate this collective cell movement.We develop quantitative methods for cell velocity orientation analysis,and find that boundary cells exhibit stronger tangential ordering migration than inner cells in circular pattern.Furthermore,decreased tangential ordering movement capability of collective cells in triangular and square patterns are observed,due to the disturbance of cell motion at unsmooth corners of these patterns.On the other hand,the collective cell rotation is slightly affected by a convex defect of the circular pattern,while almost hindered with a concave defect,also resulting from different smoothness features of their boundaries.Numerical simulations employing cell Potts model well reproduce and extend experimental observations.Together,our results highlight the importance of boundary smoothness in the regulation of collective cell tangential ordering migration. 展开更多
关键词 Collective cell migration spatial restrictions tangential ordering geometric regula-tion cell Potts model
下载PDF
Modeling and analysis of an inextensible beam with inertial and geometric nonlinearities
12
作者 Zhanhuan YAO Tieding GUO Wanzhi QIAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第12期2113-2130,共18页
The present study focuses on an inextensible beam and its relevant inertia nonlinearity,which are essentially distinct from the commonly treated extensible beam that is dominated by the geometric nonlinearity.Explicit... The present study focuses on an inextensible beam and its relevant inertia nonlinearity,which are essentially distinct from the commonly treated extensible beam that is dominated by the geometric nonlinearity.Explicitly,by considering a weakly constrained or free end(in the longitudinal direction),the inextensibility assumption and inertial nonlinearity(with and without an initial curvature)are introduced.For a straight beam,a multi-scale analysis of hardening/softening dynamics reveals the effects of the end stiffness/mass.Extending the straight scenario,a refined inextensible curved beam model is further proposed,accounting for both its inertial nonlinearity and geometric nonlinearity induced by the initial curvature.The numerical results for the frequency responses are also presented to illustrate the dynamic effects of the initial curvature and axial constraint,i.e.,the end mass and end stiffness. 展开更多
关键词 inextensible beam inertia nonlinearity initial curvature geometric nonlinearity hardening/softening dynamics
下载PDF
An Original Didactic about Standard Model (Geometric Model of Particle: The Quarks)
13
作者 Giovanni Guido Abele Bianchi Gianluigi Filippelli 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期854-874,共21页
This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillator... This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (GMP). From these didactic hypotheses emerges an in-depth phenomenology of particles (quarks) fully compatible with that of SM, showing, besides, that the number of possible quarks is six. 展开更多
关键词 Golden Particle QUARK Sub-Oscillator Semi-Quanta IQuO geometric Structure Golden Number Massive Coupling INTERPENETRATION IQuO PION MESON
下载PDF
An Original Didactic of the Standard Model “The Particle’s Geometric Model” (Nucleons and K-Mesons)
14
作者 Giovanni Guido Abele Bianchi Gianluigi Filippelli 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1054-1078,共25页
This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes o... This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (IQuO). By the properties of IQuO one can define the electric charge and that of color of quarks. Showing the “aurea” (golden) triangular shape of all quarks, we manage to represent the geometric combinations of the nucleons, light mesons, and K-mesons. By the geometric shape of W-bosons, we represent the weak decay of pions and charged Kaons and neutral, highlighting in geometric terms the possibilities of decay in two and three pions of neutral Kaon and the transition to anti-Kaon. In conclusion, from this didactic representation, an in-depth and exhaustive phenomenology of hadrons emerges, which even manages to resolve some problematic aspects of the SM. 展开更多
关键词 Golden Particle Quark Sub-Oscillator Semi-Quanta IQuO geometric Structure Golden Number Massive Coupling INTERPENETRATION NUCLEON KAON BOSON
下载PDF
Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model
15
作者 Runqing CAO Zilong GUO +2 位作者 Wei CHEN Huliang DAI Lin WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期261-276,共16页
Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid... Due to the novel applications of flexible pipes conveying fluid in the field of soft robotics and biomedicine,the investigations on the mechanical responses of the pipes have attracted considerable attention.The fluid-structure interaction(FSI)between the pipe with a curved shape and the time-varying internal fluid flow brings a great challenge to the revelation of the dynamical behaviors of flexible pipes,especially when the pipe is highly flexible and usually undergoes large deformations.In this work,the geometrically exact model(GEM)for a curved cantilevered pipe conveying pulsating fluid is developed based on the extended Hamilton's principle.The stability of the curved pipe with three different subtended angles is examined with the consideration of steady fluid flow.Specific attention is concentrated on the large-deformation resonance of circular pipes conveying pulsating fluid,which is often encountered in practical engineering.By constructing bifurcation diagrams,oscillating shapes,phase portraits,time traces,and Poincarémaps,the dynamic responses of the curved pipe under various system parameters are revealed.The mean flow velocity of the pulsating fluid is chosen to be either subcritical or supercritical.The numerical results show that the curved pipe conveying pulsating fluid can exhibit rich dynamical behaviors,including periodic and quasi-periodic motions.It is also found that the preferred instability type of a cantilevered curved pipe conveying steady fluid is mainly in the flutter of the second mode.For a moderate value of the mass ratio,however,a third-mode flutter may occur,which is quite different from that of a straight pipe system. 展开更多
关键词 curved pipe conveying fluid pulsating fluid geometrically exact model(GEM) nonlinear dynamics parametric vibration FLUTTER
下载PDF
Intelligent Metal Detection and Disposal Automation Equipment Based on Geometric Optimization Driving Algorithm
16
作者 TIAN Xuehui LI Chengzu +3 位作者 WEI Kehan QIAN Yang ZHANG Lu WANG Rongwu 《Journal of Donghua University(English Edition)》 CAS 2024年第5期492-504,共13页
In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of el... In order to solve the problem of metal impurities mixed in the production line of wood pulp nonwoven raw materials,intelligent metal detection and disposal automation equipment is designed.Based on the principle of electromagnetic induction,the precise positioning of metal coordinates is realized by initial inspection and multi-directional re-inspection.Based on a geometry optimization driving algorithm,the cutting area is determined by locating the center of the circle that covers the maximum area.This approach aims to minimize the cutting area and maximize the use of materials.Additionally,the method strives to preserve as many fabrics at the edges as possible by employing the farthest edge covering circle algorithm.Based on a speed compensation algorithm,the flexible switching of upper and lower rolls is realized to ensure the maximum production efficiency.Compared with the metal detection device in the existing production line,the designed automation equipment has the advantages of higher detection sensitivity,more accurate metal coordinate positioning,smaller cutting material areas and higher production efficiency,which can make the production process more continuous,automated and intelligent. 展开更多
关键词 intelligent manufacturing electromagnetic induction metal detection geometric optimization driving algorithm automation equipment
下载PDF
Quantum geometric tensor and the topological characterization of the extended Su-Schrieffer-Heeger model
17
作者 曾相龙 赖文喜 +1 位作者 魏祎雯 马余全 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期260-265,共6页
We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expression... We investigate the quantum metric and topological Euler number in a cyclically modulated Su-Schrieffer-Heeger(SSH)model with long-range hopping terms.By computing the quantum geometry tensor,we derive exact expressions for the quantum metric and Berry curvature of the energy band electrons,and we obtain the phase diagram of the model marked by the first Chern number.Furthermore,we also obtain the topological Euler number of the energy band based on the Gauss-Bonnet theorem on the topological characterization of the closed Bloch states manifold in the first Brillouin zone.However,some regions where the Berry curvature is identically zero in the first Brillouin zone result in the degeneracy of the quantum metric,which leads to ill-defined non-integer topological Euler numbers.Nevertheless,the non-integer"Euler number"provides valuable insights and an upper bound for the absolute values of the Chern numbers. 展开更多
关键词 quantum geometric tensor topological Euler number Chern number Berry curvature quantum metric Su-Schrieffer-Heeger(SSH)model
下载PDF
ConGCNet:Convex geometric constructive neural network for Industrial Internet of Things
18
作者 Jing Nan Wei Dai +1 位作者 Chau Yuen Jinliang Ding 《Journal of Automation and Intelligence》 2024年第3期169-175,共7页
The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained n... The intersection of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)has garnered ever-increasing attention and research interest.Nevertheless,the dilemma between the strict resource-constrained nature of IIoT devices and the extensive resource demands of AI has not yet been fully addressed with a comprehensive solution.Taking advantage of the lightweight constructive neural network(LightGCNet)in developing fast learner models for IIoT,a convex geometric constructive neural network with a low-complexity control strategy,namely,ConGCNet,is proposed in this article via convex optimization and matrix theory,which enhances the convergence rate and reduces the computational consumption in comparison with LightGCNet.Firstly,a low-complexity control strategy is proposed to reduce the computational consumption during the hidden parameters training process.Secondly,a novel output weights evaluated method based on convex optimization is proposed to guarantee the convergence rate.Finally,the universal approximation property of ConGCNet is proved by the low-complexity control strategy and convex output weights evaluated method.Simulation results,including four benchmark datasets and the real-world ore grinding process,demonstrate that ConGCNet effectively reduces computational consumption in the modelling process and improves the model’s convergence rate. 展开更多
关键词 Industrial Internet of Things Lightweight geometric constructive neural network Convex optimization RESOURCE-CONSTRAINED Matrix theory
下载PDF
Effect of the Geometrical Parameter of OpenMicrochannel on Pool Boiling Enhancement
19
作者 Ali M.H.Al-Obaidy Ekhlas M.Fayyadh Amer M.Al-Dabagh 《Frontiers in Heat and Mass Transfer》 EI 2024年第5期1421-1442,共22页
High heat dissipation is required for miniaturization and increasing the power of electronic systems.Pool boiling is a promising option for achieving efficient heat dissipation at low wall superheat without the need f... High heat dissipation is required for miniaturization and increasing the power of electronic systems.Pool boiling is a promising option for achieving efficient heat dissipation at low wall superheat without the need for moving parts.Many studies have focused on improving heat transfer efficiency during boiling by modifying the surface of the heating element.This paper presents an experimental investigation on improving pool boiling heat transfer using an open microchannel.The primary goal of this work is to investigate the impact of the channel geometry characteristics on boiling heat transfer.Initially,rectangular microchannels were prepared on a circular copper test piece with a diameter of 20 mm.Then,the boiling characteristics of these microchannels were compared with those of a smooth surface under saturated conditions using deionized water.In this investigation,a wire-cutting electrical discharge machine(EDM)machine was used to produce parallel microchannels with channel widths of 0.2,0.4,and 0.8 mm.The fin thicknesses were 0.2,0.4,and 0.6 mm,while the channel depth remained constant at 0.4 mm.The results manifested that the surface featuring narrower fins and broader channels achieved superior performance.The heat transfer coefficient(HTC)was enhanced by a maximum of 248%,and the critical heat flux(CHF)was enhanced by a maximum of 101%compared to a plain surface.Eventually,the obtained results were compared with previous research and elucidated a good agreement. 展开更多
关键词 Pool boiling microchannel surface geometrical parameter heat transfer enhancement critical heat flux
下载PDF
A Study on Multivariable Interactions Concerning Radar Cross Section Reduction through Geometric Attributes
20
作者 Evan Sharp 《Journal of Applied Mathematics and Physics》 2024年第7期2582-2593,共12页
This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in lin... This resolution 5 (25−1 factorial) study aimed to ascertain an understanding of the interactions between different geometries on the resulting Radar Cross Section (RCS) of a target. The results of the study are in line with the general understanding of the impact different geometries have on RCS but show that geometries can also influence the variance of measured RCS, and typical attributes that reduce RCS increase the variance of the measured RCS. Notably, an increased angle between the front face of a plate and the direction of the radar signal decreased RCS but increased the variance of the RCS measured. 展开更多
关键词 Radar Cross Section RCS geometrical Attributes RADAR STEALTH
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部