The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric an...The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.展开更多
During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field...During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field” [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass;and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter.展开更多
Riemann hypothesis (RH) is a difficult problem. So far one doesn’t know how to go about it. Studying <i>ζ</i> and using analysis method likely are two incor-rect guides. Actually, a unique hope may study...Riemann hypothesis (RH) is a difficult problem. So far one doesn’t know how to go about it. Studying <i>ζ</i> and using analysis method likely are two incor-rect guides. Actually, a unique hope may study Riemann function <img alt="" src="Edit_8fcdfff5-6b95-42a4-8f47-2cabe2723dfc.bmp" />, <img alt="" src="Edit_6ce3a4bd-4c68-49e5-aabe-dec3e904e282.bmp" />, <img alt="" src="Edit_29ea252e-a81e-4b21-a41c-09209c780bb2.bmp" /> by geometric analysis, which has the symmetry: v=0 if <i>β</i>=0, and basic expression <img alt="" src="Edit_bc7a883f-312d-44fd-bcdd-00f25c92f80a.bmp" />. We show that |u| is single peak in each root-interval <img alt="" src="Edit_d7ca54c7-4866-4419-a4bd-cbb808b365af.bmp" /> of <i>u</i> for fixed <em>β</em> ∈(0,1/2]. Using the slope u<sub>t</sub>, we prove that <i>v</i> has opposite signs at two end-points of I<sub>j</sub>. There surely exists an inner point such that , so {|u|,|v|/<em>β</em>} form a local peak-valley structure, and have positive lower bound <img alt="" src="Edit_bac1a5f6-673e-49b6-892c-5adff0141376.bmp" /> in I<sub>j</sub>. Because each <i>t</i> must lie in some I<sub>j</sub>, then ||<em>ξ</em>|| > 0 is valid for any <i>t</i> (<i>i.e.</i> RH is true). Using the positivity <img alt="" src="Edit_83c3d2cf-aa7e-4aba-89f5-0eb44659918a.bmp" /> of Lagarias (1999), we show the strict monotone <img alt="" src="Edit_87eb4e9e-bc7b-43e3-b316-5dcf0efaf0d5.bmp" /> for <i>β</i> > <i>β</i><sub>0</sub> ≥ 0 , and the peak-valley structure is equiva-lent to RH, which may be the geometric model expected by Bombieri (2000). This research follows Liuhui’s methodology: “Computing can detect the un-known and method”.</i>展开更多
This paper proves Riemann conjecture (RH), <em>i.e</em>., that all the zeros in critical region of Riemann <span style="white-space:nowrap;"><em><span style="white-space:nowra...This paper proves Riemann conjecture (RH), <em>i.e</em>., that all the zeros in critical region of Riemann <span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><em>ξ</em><span style="white-space:normal;"> </span></span></em></span>-function lie on symmetric line <span style="white-space:nowrap;"><em>σ</em></span> =1/2 . Its proof is based on two important properties: the symmetry and alternative oscillation for <span style="white-space:nowrap;"><em><em>ξ</em><span style="white-space:normal;"> </span></em>=<em> u </em>+<em> iv</em></span> . Denote <img src="Edit_317839cd-bad0-44d8-b081-c473bcb336f1.png" width="170" height="15" alt="" />. Riemann proved that u is real and <em>v</em> <span style="white-space:nowrap;">≡ </span>0 for <span style="white-space:nowrap;"><em><span style="white-space:nowrap;">β</span></em> =0</span> (the symmetry). We prove that the zeros of u and v for <em>β</em> <span style="white-space:nowrap;">> 0</span> are alternative, so <span style="white-space:nowrap;"><em>u</em> (<em>t</em>,0)</span> is the single peak. A geometric model was proposed. <img src="Edit_27688061-de42-4bce-ad80-6fb3dd1e3d4b.png" width="85" height="27" alt="" /> is called the root-interval of <em>u </em>(<em>t</em>,<em style="white-space:normal;">β</em>) , if |<span style="white-space:nowrap;"><em>u</em>| <em>> </em>0</span> is inside <em>I</em><sub><em>j</em> </sub>and <span style="white-space:nowrap;"><em>u</em> = 0</span> is at its two ends. If |<em>u</em> (<em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em>)| has only one peak on each <em style="white-space:normal;">I</em><sub style="white-space:normal;"><em>j</em></sub>, which is called the single peak, else called multiple peaks (it will be proved that the multiple peaks do not exist). The important expressions of u and v for <em style="white-space:normal;">β</em><span style="white-space:normal;"> </span>> 0 were derived. By <img src="Edit_b6369c2e-6a6d-4e1a-8a75-00d743cecaf1.png" width="240" height="28" alt="" />, the peak <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> will develop toward its convex direction. Besides, <em style="white-space:normal;">u<sub>t</sub> </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> has opposite signs at two ends <em>t</em> = <em>t<sub>j</sub></em><sub> </sub>, <em>t<sub>j+1</sub></em> of <em>I<sub>j </sub></em>, <img src="Edit_be3f0d63-1d24-4165-ac2c-141c9a47d1c8.png" width="145" height="28" alt="" /> also does, then there exists some inner point <span style="white-space:nowrap;"><em>t</em>′</span> such that <span style="white-space:nowrap;"><em>v</em><em></em> (<em>t′</em>,<em>β</em>) = 0</span>. Therefore {|<em>u</em>|,|<em>v</em>|/<em>β</em>} in <em>I<sub>j</sub></em><sub> </sub>form a peak-valley structure such that <img src="Edit_70bb530a-662f-464a-b3c8-4d5625fbf679.png" width="180" height="22" alt="" /> has positive lower bound independent of <em>t</em> <span style="white-space:nowrap;">∈ </span><em>I<sub>j</sub></em><sub> </sub>(<em>i.e</em>. RH holds in <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>). As <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> does not have the finite condensation point (unless <span style="white-space:nowrap;"><em>u</em> = <em>cons</em><em>t</em>.</span>), any finite t surely falls in some <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>, then <img src="Edit_166a9981-aac8-476b-a29a-496763297b35.png" width="50" height="23" alt="" /> holds for any t (RH is proved). Our previous paper “Local geometric proof of Riemann conjecture” (APM, V.10:8, 2020) has two defects, this paper has amended these defects and given a complete proof of RH.展开更多
Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly...Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes, which implicitly proves Goldbach’s Conjecture for 2n as well.展开更多
Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the explo...Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the exploration of appro-priate electrode materials with the correct size for reversibly accommodating large K+ions presents a significant challenge.In addition,the reaction mecha-nisms and origins of enhanced performance remain elusive.Here,tetragonal FeSe nanoflakes of different sizes are designed to serve as an anode for PIBs,and their live and atomic-scale potassiation/depotassiation mechanisms are revealed for the first time through in situ high-resolution transmission electron micros-copy.We found that FeSe undergoes two distinct structural evolutions,sequen-tially characterized by intercalation and conversion reactions,and the initial intercalation behavior is size-dependent.Apparent expansion induced by the intercalation of K+ions is observed in small-sized FeSe nanoflakes,whereas unexpected cracks are formed along the direction of ionic diffusion in large-sized nanoflakes.The significant stress generation and crack extension originating from the combined effect of mechanical and electrochemical interactions are elucidated by geometric phase analysis and finite-element analysis.Despite the different intercalation behaviors,the formed products of Fe and K_(2)Se after full potassiation can be converted back into the original FeSe phase upon depotassiation.In particular,small-sized nanoflakes exhibit better cycling perfor-mance with well-maintained structural integrity.This article presents the first successful demonstration of atomic-scale visualization that can reveal size-dependent potassiation dynamics.Moreover,it provides valuable guidelines for optimizing the dimensions of electrode materials for advanced PIBs.展开更多
This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes o...This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (IQuO). By the properties of IQuO one can define the electric charge and that of color of quarks. Showing the “aurea” (golden) triangular shape of all quarks, we manage to represent the geometric combinations of the nucleons, light mesons, and K-mesons. By the geometric shape of W-bosons, we represent the weak decay of pions and charged Kaons and neutral, highlighting in geometric terms the possibilities of decay in two and three pions of neutral Kaon and the transition to anti-Kaon. In conclusion, from this didactic representation, an in-depth and exhaustive phenomenology of hadrons emerges, which even manages to resolve some problematic aspects of the SM.展开更多
This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillator...This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (GMP). From these didactic hypotheses emerges an in-depth phenomenology of particles (quarks) fully compatible with that of SM, showing, besides, that the number of possible quarks is six.展开更多
Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes ...Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter.展开更多
This paper deals with the Bayesian inferences of unknown parameters of the progressively Type II censored Weibull-geometric (WG) distribution. The Bayes estimators cannot be obtained in explicit forms of the unknown p...This paper deals with the Bayesian inferences of unknown parameters of the progressively Type II censored Weibull-geometric (WG) distribution. The Bayes estimators cannot be obtained in explicit forms of the unknown parameters under a squared error loss function. The approximate Bayes estimators will be computed using the idea of Markov Chain Monte Carlo (MCMC) method to generate from the posterior distributions. Also the point estimation and confidence intervals based on maximum likelihood and bootstrap technique are also proposed. The approximate Bayes estimators will be obtained under the assumptions of informative and non-informative priors are compared with the maximum likelihood estimators. A numerical example is provided to illustrate the proposed estimation methods here. Maximum likelihood, bootstrap and the different Bayes estimates are compared via a Monte Carlo Simulation展开更多
The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to ov...The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to overcome these problems, an approach to continuous approximation of Pareto front using geometric support vector regression is presented. The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front. In the process of geometric support vector regression modeling, considering the distribution characteristic of Pareto optimal points, the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes. Besides, an interactive decision-making(DM)procedure, in which the continuous approximation of Pareto front and decision-making is performed interactively, is designed for improving the accuracy of the preferred Pareto optimal point. The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition,combined with the interactive decision-making procedure, the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process. The experimental results show that the generated approximate continuous Pareto front has good accuracy and completeness. Compared with the multi-objective evolutionary algorithm with large size population, a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less computation and shorter running time. The operation strategy corresponding to the final preferred Pareto optimal point generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively.展开更多
Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws...Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.展开更多
目的研究老年人骨密度(Bone mineral density,BMD)值结合股骨近端几何参数是否能提高骨质疏松性髋部骨折危险性的预测。方法将85例绝经后妇女髋部骨折患者按骨折类型分组, 其中52例股骨颈骨折,33例转子间骨折。对照组100例老年女性。在...目的研究老年人骨密度(Bone mineral density,BMD)值结合股骨近端几何参数是否能提高骨质疏松性髋部骨折危险性的预测。方法将85例绝经后妇女髋部骨折患者按骨折类型分组, 其中52例股骨颈骨折,33例转子间骨折。对照组100例老年女性。在骨盆片上测量股骨近端几何参数,在股骨颈、Ward’s三角和转子处测量BMD值,对结果进行统计学处理分析。结果骨折组的BMD值均低于对照组(P<0.01);股骨干皮质厚度与股骨颈BMD值有相关性(r=0.45,P< 0.01);逐步线性回归分析结果显示股骨距内侧皮质厚度、转子处BMD值、颈干角和Ward’s三角 BMD值相结合是预测髋部骨折最好方法(r=0.74,r2=0.53,P<0.01)。结论骨密度值结合放射学测量股骨近端几何参数能提高对骨质疏松性髋部骨折及骨折类型的预测。展开更多
Let 0<γ<π be a fixed pythagorean angle. We study the abelian group Hr of primitive integral triangles (a,b,c) for which the angle opposite side c is γ. Addition in Hr is defined by adding the angles β opposi...Let 0<γ<π be a fixed pythagorean angle. We study the abelian group Hr of primitive integral triangles (a,b,c) for which the angle opposite side c is γ. Addition in Hr is defined by adding the angles β opposite side b and modding out by π-γ. The only Hr for which the structure is known is Hπ/2, which is free abelian. We prove that for generalγ, Hr has an element of order two iff 2(1- cosγ) is a rational square, and it has elements of order three iff the cubic (2cosγ)x3-3x2+1=0 has a rational solution 0<x<1. This shows that the set of values ofγ for which Hr has two-torsion is dense in [0, π], and similarly for three-torsion. We also show that there is at most one copy of either Z2 or Z3 in Hr. Finally, we give some examples of higher order torsion elements in Hr.展开更多
In this study,the effects of geometrical and physical factors on light particles dispersion in stirred tank were investigated by agitation characteristic curve.The experiments and CFD simulations with discrete phase m...In this study,the effects of geometrical and physical factors on light particles dispersion in stirred tank were investigated by agitation characteristic curve.The experiments and CFD simulations with discrete phase model(DPM)and volume of fluid model(VOF)were conducted in this paper.Five factors,which include four geometrical factors(submergence,impeller-to-tank ratio,number of impeller blades and baffling mode)and a physical factor(liquid viscosity)were considered.For each factor,the power consumption curve and agitation characteristic curve were drawn to compare the power consumption and mixing results in the stirred tank.Characteristics of the agitation characteristic curves were compared with the previous published literatures and theories.It is found that the agitation characteristic curves reflect the tendency of power consumption and particles distribution well in stirred tank.The good agreement indicates the applicability of the agitation characteristic curves for the study of light particles distribution in stirred tank.展开更多
This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of...This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of the twentieth century. For this reason it can be easily understood by any mathematician or by anyone who knows basic mathematics. The important thing is that the above “theorem” is generalized. Thus, this generalization is essentially a new theorem in the field of number theory.展开更多
In previous articles (Guido) we demonstrated that Quarks (u, d) are represented by golden geometric structures of coupled quantum oscillators. In this article we show the geometric structure of the pion triplet and, i...In previous articles (Guido) we demonstrated that Quarks (u, d) are represented by golden geometric structures of coupled quantum oscillators. In this article we show the geometric structure of the pion triplet and, in particular, via the structure equation of neutral pion, we identify its decays and we solve the spin question in hadrons thanks also to introduction of algebraic operations [?, ⊕] on geometric structure. Moreover by means of the golden ratio between (u, d), we determine the values of bare masses of quarks (3.51 MeV for u-quark and 5.67 MeV for d-quark) and those ones bounded in a pion (53.31 MeV for u-quark and 85.26 MeV for d-quark). Finally, using algebraic operations [?, ⊕] we point out a new way to represent the processes of pions’ decay.展开更多
The purpose of this paper is the physical deduction of the loading curves for spherical and flat punch indentations, in particular as the parabola assumption for not self-similar spherical impressions appears impossib...The purpose of this paper is the physical deduction of the loading curves for spherical and flat punch indentations, in particular as the parabola assumption for not self-similar spherical impressions appears impossible. These deductions avoid the still common first energy law violations of ISO 14577 by consideration of the work done by elastic and plastic pressure work. The hitherto generally accepted “parabolas’” exponents on the depth h (“2 for cone, 3/2 for spheres, and 1 for flat punches”) are still the unchanged basis of ISO 14577 standards that also enforce the up to 3 + 8 free iteration parameters for ISO hardness and ISO elastic indentation modulus. Almost all of these common practices are now challenged by physical mathematical proof of exponent 3/2 for cones by removing the misconceptions with indentation against a projected surface (contact) area with violation of the first energy law, because the elastic and inelastic pressure work cannot be obtained from nothing. Physically correct is the impression of a volume that is coupled with pressure formation that creates elastic deformation and numerous types of plastic deformations. It follows the exponent 3/2 only for the cones/pyramids/wedges loading parabola. It appears impossible that the geometrically not self-similar sphere loading curve is an h3/2 parabola. Hertz did only deduce the touching of the sphere and Sneddon did not get a parabola for the sphere. The radius over depth ratio is not constant with the sphere. The apparently good correlation of such parabola plots at large R/h ratios and low h-values does not withstand against the deduced physical equation for the spherical indentation loading curve. Such plots are unphysical for the sphere and so tried regression results indicate data-treatments. The closed physical deduction result consists of the exponential factor h and a dimensionless correction factor that is depth dependent. The non-parabola against force plot using published data is concavely bent even for large radius/depth-ratios at the shallow indents. The capabilities of conical/pyramidal/wedged indentations are thus lost. These facts are outlined for experimental nano- and micro-indentations. Spherical indentations reveal that linear data regression is suspicious and worthless if it does not correspond with physical reality. This stresses the necessity of the straightforward deductions of the correct relations on the basis of iteration-less and fitting-less undeniable calculation rules on a undeniable basic physical understanding. The straightforward physical deduction of the flat punch indentation is therefore also presented, together with formulas for the physical indentation hardness, indentation work, and applied work for these geometrically self-similar indentations. It is exemplified with a macroindentation.展开更多
文摘The wave/particle duality of particles in Physics is well known. Particles have properties that uniquely characterize them from one another, such as mass, charge and spin. Charged particles have associated Electric and Magnetic fields. Also, every moving particle has a De Broglie wavelength determined by its mass and velocity. This paper shows that all of these properties of a particle can be derived from a single wave function equation for that particle. Wave functions for the Electron and the Positron are presented and principles are provided that can be used to calculate the wave functions of all the fundamental particles in Physics. Fundamental particles such as electrons and positrons are considered to be point particles in the Standard Model of Physics and are not considered to have a structure. This paper demonstrates that they do indeed have structure and that this structure extends into the space around the particle’s center (in fact, they have infinite extent), but with rapidly diminishing energy density with the distance from that center. The particles are formed from Electromagnetic standing waves, which are stable solutions to the Schrödinger and Classical wave equations. This stable structure therefore accounts for both the wave and particle nature of these particles. In fact, all of their properties such as mass, spin and electric charge, can be accounted for from this structure. These particle properties appear to originate from a single point at the center of the wave function structure, in the same sort of way that the Shell theorem of gravity causes the gravity of a body to appear to all originate from a central point. This paper represents the first two fully characterized fundamental particles, with a complete description of their structure and properties, built up from the underlying Electromagnetic waves that comprise these and all fundamental particles.
文摘During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field” [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass;and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter.
文摘Riemann hypothesis (RH) is a difficult problem. So far one doesn’t know how to go about it. Studying <i>ζ</i> and using analysis method likely are two incor-rect guides. Actually, a unique hope may study Riemann function <img alt="" src="Edit_8fcdfff5-6b95-42a4-8f47-2cabe2723dfc.bmp" />, <img alt="" src="Edit_6ce3a4bd-4c68-49e5-aabe-dec3e904e282.bmp" />, <img alt="" src="Edit_29ea252e-a81e-4b21-a41c-09209c780bb2.bmp" /> by geometric analysis, which has the symmetry: v=0 if <i>β</i>=0, and basic expression <img alt="" src="Edit_bc7a883f-312d-44fd-bcdd-00f25c92f80a.bmp" />. We show that |u| is single peak in each root-interval <img alt="" src="Edit_d7ca54c7-4866-4419-a4bd-cbb808b365af.bmp" /> of <i>u</i> for fixed <em>β</em> ∈(0,1/2]. Using the slope u<sub>t</sub>, we prove that <i>v</i> has opposite signs at two end-points of I<sub>j</sub>. There surely exists an inner point such that , so {|u|,|v|/<em>β</em>} form a local peak-valley structure, and have positive lower bound <img alt="" src="Edit_bac1a5f6-673e-49b6-892c-5adff0141376.bmp" /> in I<sub>j</sub>. Because each <i>t</i> must lie in some I<sub>j</sub>, then ||<em>ξ</em>|| > 0 is valid for any <i>t</i> (<i>i.e.</i> RH is true). Using the positivity <img alt="" src="Edit_83c3d2cf-aa7e-4aba-89f5-0eb44659918a.bmp" /> of Lagarias (1999), we show the strict monotone <img alt="" src="Edit_87eb4e9e-bc7b-43e3-b316-5dcf0efaf0d5.bmp" /> for <i>β</i> > <i>β</i><sub>0</sub> ≥ 0 , and the peak-valley structure is equiva-lent to RH, which may be the geometric model expected by Bombieri (2000). This research follows Liuhui’s methodology: “Computing can detect the un-known and method”.</i>
文摘This paper proves Riemann conjecture (RH), <em>i.e</em>., that all the zeros in critical region of Riemann <span style="white-space:nowrap;"><em><span style="white-space:nowrap;"><em>ξ</em><span style="white-space:normal;"> </span></span></em></span>-function lie on symmetric line <span style="white-space:nowrap;"><em>σ</em></span> =1/2 . Its proof is based on two important properties: the symmetry and alternative oscillation for <span style="white-space:nowrap;"><em><em>ξ</em><span style="white-space:normal;"> </span></em>=<em> u </em>+<em> iv</em></span> . Denote <img src="Edit_317839cd-bad0-44d8-b081-c473bcb336f1.png" width="170" height="15" alt="" />. Riemann proved that u is real and <em>v</em> <span style="white-space:nowrap;">≡ </span>0 for <span style="white-space:nowrap;"><em><span style="white-space:nowrap;">β</span></em> =0</span> (the symmetry). We prove that the zeros of u and v for <em>β</em> <span style="white-space:nowrap;">> 0</span> are alternative, so <span style="white-space:nowrap;"><em>u</em> (<em>t</em>,0)</span> is the single peak. A geometric model was proposed. <img src="Edit_27688061-de42-4bce-ad80-6fb3dd1e3d4b.png" width="85" height="27" alt="" /> is called the root-interval of <em>u </em>(<em>t</em>,<em style="white-space:normal;">β</em>) , if |<span style="white-space:nowrap;"><em>u</em>| <em>> </em>0</span> is inside <em>I</em><sub><em>j</em> </sub>and <span style="white-space:nowrap;"><em>u</em> = 0</span> is at its two ends. If |<em>u</em> (<em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em>)| has only one peak on each <em style="white-space:normal;">I</em><sub style="white-space:normal;"><em>j</em></sub>, which is called the single peak, else called multiple peaks (it will be proved that the multiple peaks do not exist). The important expressions of u and v for <em style="white-space:normal;">β</em><span style="white-space:normal;"> </span>> 0 were derived. By <img src="Edit_b6369c2e-6a6d-4e1a-8a75-00d743cecaf1.png" width="240" height="28" alt="" />, the peak <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> will develop toward its convex direction. Besides, <em style="white-space:normal;">u<sub>t</sub> </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> has opposite signs at two ends <em>t</em> = <em>t<sub>j</sub></em><sub> </sub>, <em>t<sub>j+1</sub></em> of <em>I<sub>j </sub></em>, <img src="Edit_be3f0d63-1d24-4165-ac2c-141c9a47d1c8.png" width="145" height="28" alt="" /> also does, then there exists some inner point <span style="white-space:nowrap;"><em>t</em>′</span> such that <span style="white-space:nowrap;"><em>v</em><em></em> (<em>t′</em>,<em>β</em>) = 0</span>. Therefore {|<em>u</em>|,|<em>v</em>|/<em>β</em>} in <em>I<sub>j</sub></em><sub> </sub>form a peak-valley structure such that <img src="Edit_70bb530a-662f-464a-b3c8-4d5625fbf679.png" width="180" height="22" alt="" /> has positive lower bound independent of <em>t</em> <span style="white-space:nowrap;">∈ </span><em>I<sub>j</sub></em><sub> </sub>(<em>i.e</em>. RH holds in <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>). As <em style="white-space:normal;">u </em><span style="white-space:normal;">(</span><em style="white-space:normal;">t</em><span style="white-space:normal;">,</span><em style="white-space:normal;">β</em><span style="white-space:normal;">)</span> does not have the finite condensation point (unless <span style="white-space:nowrap;"><em>u</em> = <em>cons</em><em>t</em>.</span>), any finite t surely falls in some <em style="white-space:normal;">I<sub>j</sub></em><sub style="white-space:normal;"> </sub>, then <img src="Edit_166a9981-aac8-476b-a29a-496763297b35.png" width="50" height="23" alt="" /> holds for any t (RH is proved). Our previous paper “Local geometric proof of Riemann conjecture” (APM, V.10:8, 2020) has two defects, this paper has amended these defects and given a complete proof of RH.
文摘Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes, which implicitly proves Goldbach’s Conjecture for 2n as well.
基金This work was supported by the National Key R&D Program of China(Grant No.2018YFB1304902)the National Natural Science Foundation of China(Grant Nos.12004034,U1813211,22005247,11904372,51502007,52072323,52122211,12174019,and 51972058)+1 种基金the Gen-eral Research Fund of Hong Kong(Project No.11217221)China Postdoctoral Science Foundation Funded Project(Grant No.2021M690386).
文摘Potassium-ion batteries(PIBs)are considered promising alternatives to lithium-ion batteries owing to cost-effective potassium resources and a suitable redox potential of-2.93 V(vs.-3.04 V for Li+/Li).However,the exploration of appro-priate electrode materials with the correct size for reversibly accommodating large K+ions presents a significant challenge.In addition,the reaction mecha-nisms and origins of enhanced performance remain elusive.Here,tetragonal FeSe nanoflakes of different sizes are designed to serve as an anode for PIBs,and their live and atomic-scale potassiation/depotassiation mechanisms are revealed for the first time through in situ high-resolution transmission electron micros-copy.We found that FeSe undergoes two distinct structural evolutions,sequen-tially characterized by intercalation and conversion reactions,and the initial intercalation behavior is size-dependent.Apparent expansion induced by the intercalation of K+ions is observed in small-sized FeSe nanoflakes,whereas unexpected cracks are formed along the direction of ionic diffusion in large-sized nanoflakes.The significant stress generation and crack extension originating from the combined effect of mechanical and electrochemical interactions are elucidated by geometric phase analysis and finite-element analysis.Despite the different intercalation behaviors,the formed products of Fe and K_(2)Se after full potassiation can be converted back into the original FeSe phase upon depotassiation.In particular,small-sized nanoflakes exhibit better cycling perfor-mance with well-maintained structural integrity.This article presents the first successful demonstration of atomic-scale visualization that can reveal size-dependent potassiation dynamics.Moreover,it provides valuable guidelines for optimizing the dimensions of electrode materials for advanced PIBs.
文摘This paper shows a didactic model (PGM), and not only, but representative of the Hadrons described in the Standard Model (SM). In this model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (IQuO). By the properties of IQuO one can define the electric charge and that of color of quarks. Showing the “aurea” (golden) triangular shape of all quarks, we manage to represent the geometric combinations of the nucleons, light mesons, and K-mesons. By the geometric shape of W-bosons, we represent the weak decay of pions and charged Kaons and neutral, highlighting in geometric terms the possibilities of decay in two and three pions of neutral Kaon and the transition to anti-Kaon. In conclusion, from this didactic representation, an in-depth and exhaustive phenomenology of hadrons emerges, which even manages to resolve some problematic aspects of the SM.
文摘This work shows a didactic model representative of the quarks described in the Standard Model (SM). In the model, particles are represented by structures corresponding to geometric shapes of coupled quantum oscillators (GMP). From these didactic hypotheses emerges an in-depth phenomenology of particles (quarks) fully compatible with that of SM, showing, besides, that the number of possible quarks is six.
基金funded by a grant from Natural Sciences and Engineering Research Council of Canada (NSERC)the authors would like to acknowledge the Niobec mine (Saint-Honoré, QuébecQuébec)
文摘Stress-induced failure is among the most common causes of instability in Canadian deep underground mines.Open stoping is the most widely practiced underground excavation method in these mines,and creates large stopes which are subjected to stress-induced failure.The probability of failure(POF)depends on many factors,of which the geometry of an open stope is especially important.In this study,a methodology is proposed to assess the effect of stope geometrical parameters on the POF,using numerical modelling.Different ranges for each input parameter are defined according to previous surveys on open stope geometry in a number of Canadian underground mines.A Monte-Carlo simulation technique is combined with the finite difference code FLAC3D,to generate model realizations containing stopes with different geometrical features.The probability of failure(POF)for different categories of stope geometry,is calculated by considering two modes of failure;relaxation-related gravity driven(tensile)failure and rock mass brittle failure.The individual and interactive effects of stope geometrical parameters on the POF,are analyzed using a general multi-level factorial design.Finally,mathematical optimization techniques are employed to estimate the most stable stope conditions,by determining the optimal ranges for each stope’s geometrical parameter.
文摘This paper deals with the Bayesian inferences of unknown parameters of the progressively Type II censored Weibull-geometric (WG) distribution. The Bayes estimators cannot be obtained in explicit forms of the unknown parameters under a squared error loss function. The approximate Bayes estimators will be computed using the idea of Markov Chain Monte Carlo (MCMC) method to generate from the posterior distributions. Also the point estimation and confidence intervals based on maximum likelihood and bootstrap technique are also proposed. The approximate Bayes estimators will be obtained under the assumptions of informative and non-informative priors are compared with the maximum likelihood estimators. A numerical example is provided to illustrate the proposed estimation methods here. Maximum likelihood, bootstrap and the different Bayes estimates are compared via a Monte Carlo Simulation
基金Supported by the National Natural Science Foundation of China(20676013,61240047)
文摘The approaches to discrete approximation of Pareto front using multi-objective evolutionary algorithms have the problems of heavy computation burden, long running time and missing Pareto optimal points. In order to overcome these problems, an approach to continuous approximation of Pareto front using geometric support vector regression is presented. The regression model of the small size approximate discrete Pareto front is constructed by geometric support vector regression modeling and is described as the approximate continuous Pareto front. In the process of geometric support vector regression modeling, considering the distribution characteristic of Pareto optimal points, the separable augmented training sample sets are constructed by shifting original training sample points along multiple coordinated axes. Besides, an interactive decision-making(DM)procedure, in which the continuous approximation of Pareto front and decision-making is performed interactively, is designed for improving the accuracy of the preferred Pareto optimal point. The correctness of the continuous approximation of Pareto front is demonstrated with a typical multi-objective optimization problem. In addition,combined with the interactive decision-making procedure, the continuous approximation of Pareto front is applied in the multi-objective optimization for an industrial fed-batch yeast fermentation process. The experimental results show that the generated approximate continuous Pareto front has good accuracy and completeness. Compared with the multi-objective evolutionary algorithm with large size population, a more accurate preferred Pareto optimal point can be obtained from the approximate continuous Pareto front with less computation and shorter running time. The operation strategy corresponding to the final preferred Pareto optimal point generated by the interactive DM procedure can improve the production indexes of the fermentation process effectively.
文摘Achievements are presented for truss models of RC structures developed in previous years: 1. Two constitutive models, biaxial and triaxial, are based on regular trusses, with bars obeying nonlinear uniaxial σ-ε laws of material under simulation;both models have been compared with test results and show a dependence of Poisson ratio on curvature of σ-ε law. 2. A truss finite element has been used in the nonlinear static and dynamic analysis of plane RC frames;it has been compared with test results and describes, in a simple way, the formation of plastic hinges. 3. Thanks to the very simple geometry of a truss, the equilibrium equations can be easily written and the stiffness matrix can be easily updated, both with respect to the deformed truss, within each step of a static incremental loading or within each time step of a dynamic analysis, so that to take into account geometric nonlinearities. So the confinement of a RC column is interpreted as a structural stability effect of concrete. And a significant role of the transverse reinforcement is revealed, that of preventing, by its close spacing and sufficient amount, the buckling of inner longitudinal concrete struts, which would lead to a global instability of the RC column. 4. The proposed truss model is statically indeterminate, so it exhibits some features, which are not met by the “strut-and-tie” model.
文摘Let 0<γ<π be a fixed pythagorean angle. We study the abelian group Hr of primitive integral triangles (a,b,c) for which the angle opposite side c is γ. Addition in Hr is defined by adding the angles β opposite side b and modding out by π-γ. The only Hr for which the structure is known is Hπ/2, which is free abelian. We prove that for generalγ, Hr has an element of order two iff 2(1- cosγ) is a rational square, and it has elements of order three iff the cubic (2cosγ)x3-3x2+1=0 has a rational solution 0<x<1. This shows that the set of values ofγ for which Hr has two-torsion is dense in [0, π], and similarly for three-torsion. We also show that there is at most one copy of either Z2 or Z3 in Hr. Finally, we give some examples of higher order torsion elements in Hr.
基金Supported by the National Natural Science Foundation of China(51474109,51609090,51679097).
文摘In this study,the effects of geometrical and physical factors on light particles dispersion in stirred tank were investigated by agitation characteristic curve.The experiments and CFD simulations with discrete phase model(DPM)and volume of fluid model(VOF)were conducted in this paper.Five factors,which include four geometrical factors(submergence,impeller-to-tank ratio,number of impeller blades and baffling mode)and a physical factor(liquid viscosity)were considered.For each factor,the power consumption curve and agitation characteristic curve were drawn to compare the power consumption and mixing results in the stirred tank.Characteristics of the agitation characteristic curves were compared with the previous published literatures and theories.It is found that the agitation characteristic curves reflect the tendency of power consumption and particles distribution well in stirred tank.The good agreement indicates the applicability of the agitation characteristic curves for the study of light particles distribution in stirred tank.
文摘This article presents a brief and new solution to the problem known as the “Fermat’s Last Theorem”. It is achieved without the use of abstract algebra elements or elements from other fields of modern mathematics of the twentieth century. For this reason it can be easily understood by any mathematician or by anyone who knows basic mathematics. The important thing is that the above “theorem” is generalized. Thus, this generalization is essentially a new theorem in the field of number theory.
文摘In previous articles (Guido) we demonstrated that Quarks (u, d) are represented by golden geometric structures of coupled quantum oscillators. In this article we show the geometric structure of the pion triplet and, in particular, via the structure equation of neutral pion, we identify its decays and we solve the spin question in hadrons thanks also to introduction of algebraic operations [?, ⊕] on geometric structure. Moreover by means of the golden ratio between (u, d), we determine the values of bare masses of quarks (3.51 MeV for u-quark and 5.67 MeV for d-quark) and those ones bounded in a pion (53.31 MeV for u-quark and 85.26 MeV for d-quark). Finally, using algebraic operations [?, ⊕] we point out a new way to represent the processes of pions’ decay.
文摘The purpose of this paper is the physical deduction of the loading curves for spherical and flat punch indentations, in particular as the parabola assumption for not self-similar spherical impressions appears impossible. These deductions avoid the still common first energy law violations of ISO 14577 by consideration of the work done by elastic and plastic pressure work. The hitherto generally accepted “parabolas’” exponents on the depth h (“2 for cone, 3/2 for spheres, and 1 for flat punches”) are still the unchanged basis of ISO 14577 standards that also enforce the up to 3 + 8 free iteration parameters for ISO hardness and ISO elastic indentation modulus. Almost all of these common practices are now challenged by physical mathematical proof of exponent 3/2 for cones by removing the misconceptions with indentation against a projected surface (contact) area with violation of the first energy law, because the elastic and inelastic pressure work cannot be obtained from nothing. Physically correct is the impression of a volume that is coupled with pressure formation that creates elastic deformation and numerous types of plastic deformations. It follows the exponent 3/2 only for the cones/pyramids/wedges loading parabola. It appears impossible that the geometrically not self-similar sphere loading curve is an h3/2 parabola. Hertz did only deduce the touching of the sphere and Sneddon did not get a parabola for the sphere. The radius over depth ratio is not constant with the sphere. The apparently good correlation of such parabola plots at large R/h ratios and low h-values does not withstand against the deduced physical equation for the spherical indentation loading curve. Such plots are unphysical for the sphere and so tried regression results indicate data-treatments. The closed physical deduction result consists of the exponential factor h and a dimensionless correction factor that is depth dependent. The non-parabola against force plot using published data is concavely bent even for large radius/depth-ratios at the shallow indents. The capabilities of conical/pyramidal/wedged indentations are thus lost. These facts are outlined for experimental nano- and micro-indentations. Spherical indentations reveal that linear data regression is suspicious and worthless if it does not correspond with physical reality. This stresses the necessity of the straightforward deductions of the correct relations on the basis of iteration-less and fitting-less undeniable calculation rules on a undeniable basic physical understanding. The straightforward physical deduction of the flat punch indentation is therefore also presented, together with formulas for the physical indentation hardness, indentation work, and applied work for these geometrically self-similar indentations. It is exemplified with a macroindentation.