We study the quantification of geometric discord for tripartite quantum systems.Firstly,we obtain the analytic formula of geometric discord for tripartite pure states.It is already known that the geometric discord of ...We study the quantification of geometric discord for tripartite quantum systems.Firstly,we obtain the analytic formula of geometric discord for tripartite pure states.It is already known that the geometric discord of pure states reduces to the geometric entanglement in bipartite systems,the results presented here show that this property is no longer true in tripartite systems.Furthermore,we provide an operational meaning for tripartite geometric discord by linking it to quantum state discrimination,that is,we prove that the geometric discord of tripartite states is equal to the minimum error probability to discriminate a set of quantum states with von Neumann measurement.Lastly,we calculate the geometric discord of three-qubit Bell diagonal states and then investigate the dynamic behavior of tripartite geometric discord under local decoherence.It is interesting that the frozen phenomenon exists for geometric discord in this scenario.展开更多
Geometric quantum discord(GQD) and Berry phase between two charge qubits coupled by a quantum transmission line are investigated. We show how GQDs evolve and investigate their dependencies on the parameters of the s...Geometric quantum discord(GQD) and Berry phase between two charge qubits coupled by a quantum transmission line are investigated. We show how GQDs evolve and investigate their dependencies on the parameters of the system.We also calculate the energy and the Berry phase and compare them with GQD, finding that there are close connections between them.展开更多
We studied quantum correlation and quantum entanglement of a quantum system in which a coherent state light field interacts with two qubits that are initially prepared in a separable and mixed state.The influence of m...We studied quantum correlation and quantum entanglement of a quantum system in which a coherent state light field interacts with two qubits that are initially prepared in a separable and mixed state.The influence of mean photon number of the coherent field and distribution probability of the atom on the geometrical quantum discord and the negativity are discussed.Our results show that the mean photon number of light field and distribution function of the atom can regulate and control the quantum correlation and quantum entanglement.展开更多
We study the dynamics of geometric quantum discord(GQD) between two qubits,each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature.In both weak and strong qubit-reser...We study the dynamics of geometric quantum discord(GQD) between two qubits,each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature.In both weak and strong qubit-reservoirs coupling regimes,we find that the increase of the number K of reservoirs can induce the damped oscillation of GQD,and enhance the memory effects of the overall environment.And the Hilbert-Schmidt norm GQD(two-norm GQD) is always smaller than the trace norm geometric quantum discord(one-norm GQD).Therefore,the one-norm GQD is a better way to measure the quantum correlation.Finally,we propose an effective strategy to improve GQD by using partially collapsing measurements,and we find that the protection effect is better with the increase of the weak measurement strength.展开更多
We consider the geometric global quantum discord (GGQD) of two-qubit systems. By analyzing the symmetry of geometric global quantum discord we give an approach for deriving analytical formulae of the extremum proble...We consider the geometric global quantum discord (GGQD) of two-qubit systems. By analyzing the symmetry of geometric global quantum discord we give an approach for deriving analytical formulae of the extremum problem which lies at the core of computing the GGQD for arbitrary two-qubit states. Furthermore, formulae of GGQD of arbitrary two-qubit states and some concrete examples are presented.展开更多
Instead of projective measurement, we use weak measurement to define quantum and geometric discords, and compare them with the normal quantum and geometric discords based on the projective measurement in noninertial f...Instead of projective measurement, we use weak measurement to define quantum and geometric discords, and compare them with the normal quantum and geometric discords based on the projective measurement in noninertial frames. We find that using weak measurement to define quantum discord we can capture more quantum correlations compared with the projective measurement, so calling it super quantum discord. However, we note that the geometric discord based on the weak measurements becomes smaller, so we name it inferior “geometric discord”. We also show that, although both the super quantum discord and the inferior “geometric discord” decrease with the increase of observer’s acceleration, the super quantum discord/inferior “geometric discord” increases/decreases as the measurements become weak. These differences reveal that the definitions of the quantum and geometric discords are not too concordant with each other.展开更多
Dynamics of measurement-induced-nonlocality (MIN) and geometric measure of discord (GD) in the spin-boson model is studied. Analytical results show that for two large classes of initial states, MINs are equal but GDs ...Dynamics of measurement-induced-nonlocality (MIN) and geometric measure of discord (GD) in the spin-boson model is studied. Analytical results show that for two large classes of initial states, MINs are equal but GDs are different. At the end of evolution, MIN and GD initially stored in the spin system transfer completely to reservoirs. The quantum beats for MIN and GD are also found which are the results of quantum interference between two local non-Markovian dynamics via quantum correlation.展开更多
Quantum correlation shows a fascinating nature of quantum mechanics and plays an important role in some physics topics,especially in the field of quantum information.Quantum correlations of the composite system can be...Quantum correlation shows a fascinating nature of quantum mechanics and plays an important role in some physics topics,especially in the field of quantum information.Quantum correlations of the composite system can be quantified by resorting to geometric or entropy methods,and all these quantification methods exhibit the peculiar freezing phenomenon.The challenge is to find the characteristics of the quantum states that generate the freezing phenomenon,rather than only study the conditions which generate this phenomenon under a certain quantum system.In essence,this is a classification problem.Machine learning has become an effective method for researchers to study classification and feature generation.In this work,we prove that the machine learning can solve the problem of X form quantum states,which is a problem of physical significance.Subsequently,we apply the density-based spatial clustering of applications with noise(DBSCAN)algorithm and the decision tree to divide quantum states into two different groups.Our goal is to classify the quantum correlations of quantum states into two classes:one is the quantum correlation with freezing phenomenon for both Rènyi discord(α=2)and the geometric discord(Bures distance),the other is the quantum correlation of non-freezing phenomenon.The results demonstrate that the machine learning method has reasonable performance in quantum correlation research.展开更多
In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model wi...In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model with stag- gered Dzyaloshinskii-Moriya (DM) interaction have been investigated using the quantum renormalization group (QRG) method. We summarize the monogamy relation for different quantum correlation measures and make an explicit compar- ison. Through mathematical calculations and analysis, we obtain that no matter whether the QRG steps are carried out, the monogamy of the given states are always unaltered. Moreover, we conclude that the geometric quantum discord and concurrence obey the monogamy property while other quantum correlation measures, such as entanglement of formation and quantum discord, violate it for this given model.展开更多
We investigate the characteristics of three kinds of quantum correlations, measured by pairwise quantum discord (QD), geometric measure of quantum discord (GMQD), and measurement-induced disturbance (MID), in th...We investigate the characteristics of three kinds of quantum correlations, measured by pairwise quantum discord (QD), geometric measure of quantum discord (GMQD), and measurement-induced disturbance (MID), in the systems of three- and four-dipole arrays. The influence of the temperature on the three quantum correlations and entanglement of the systems is also analyzed numerically. It is found that novel quantum correlation switches called QD, GMQD, and MID respectively can be constructed with the qubits consisting of electric dipoles coupled by the dipole-dipole interaction and oriented along or against the external electric field. Moreover, with the increase of temperature, QD, GMQD, and MID are more robust than entanglement against the thermal environment. It is also found that for each dipole pair of the three- and four-dipole arrangements, the MID is always the largest and the GMQD the smallest.展开更多
We investigate the geometric picture of the level surfaces of quantum entanglement and geometric measure of quantum discord(GMQD) of a class of X-states, respectively. This pictorial approach provides us a direct unde...We investigate the geometric picture of the level surfaces of quantum entanglement and geometric measure of quantum discord(GMQD) of a class of X-states, respectively. This pictorial approach provides us a direct understanding of the structure of entanglement and GMQD. The dynamic evolution of GMQD under two typical kinds of quantum decoherence channels is also investigated. It is shown that there exists a class of initial states for which the GMQD is not destroyed by decoherence in a finite time interval. Furthermore, we establish a factorization law between the initial and final GMQD, which allows us to infer the evolution of entanglement under the influences of the environment.展开更多
A generalization of the geometric measure of quantum discord is introduced in this article, based on Hellinger distance. Our definition has virtues of computability and independence of local measurement. In addition i...A generalization of the geometric measure of quantum discord is introduced in this article, based on Hellinger distance. Our definition has virtues of computability and independence of local measurement. In addition it also does not suffer from the recently raised critiques about quantum discord. The exact result can be obtained for bipartite pure states with arbitrary levels, which is completely determined by the Schmidt decomposition. For bipartite mixed states the exact result can also be found for a special case. Furthermore the generalization into multipartite case is direct. It is shown that it can be evaluated exactly when the measured state is invariant under permutation or translation. In addition the detection of quantum phase transition is also discussed for Lipkin–Meshkov–Glick and Dicke model.展开更多
We studied the quantum correlations of a three-body Unruh-DeWitt detector system using genuine tripartite entanglement(GTE)and geometric quantum discord(GQD).We considered two representative three-body initial entangl...We studied the quantum correlations of a three-body Unruh-DeWitt detector system using genuine tripartite entanglement(GTE)and geometric quantum discord(GQD).We considered two representative three-body initial entangled states,namely the GHZ state and the W state.We demonstrated that the quantum correlations of the tripartite system are completely destroyed at the limit of infinite acceleration.In particular,it is found that the GQD of the two initial states exhibits“sudden change”behavior with increasing acceleration.It is shown that the quantum correlations of the W state are more sensitive than those of the GHZ state under the effect of Unruh thermal noise.The GQD is a more robust quantum resource than the GTE,and we can achieve robustness in discord-type quantum correlations by selecting the smaller energy gap in the detector.These findings provide guidance for selecting appropriate quantum states and resources for quantum information processing tasks in a relativistic setting.展开更多
在文献[1]的基础上,将文献[1]中求解出消相干环境下Bell对角态的GMQD(geometric measure of quantumdiscord)方法推广到求解具有普遍形式的X-态的GMQD,并在求出一般形式X-态在3种不同消干环境的GMQD后,将结果应用于Bell对角态进行验证,...在文献[1]的基础上,将文献[1]中求解出消相干环境下Bell对角态的GMQD(geometric measure of quantumdiscord)方法推广到求解具有普遍形式的X-态的GMQD,并在求出一般形式X-态在3种不同消干环境的GMQD后,将结果应用于Bell对角态进行验证,能得到与文献[1]一致的形式.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12201555)China Postdoctoral Science Foundation(Grant No.2021M702864)。
文摘We study the quantification of geometric discord for tripartite quantum systems.Firstly,we obtain the analytic formula of geometric discord for tripartite pure states.It is already known that the geometric discord of pure states reduces to the geometric entanglement in bipartite systems,the results presented here show that this property is no longer true in tripartite systems.Furthermore,we provide an operational meaning for tripartite geometric discord by linking it to quantum state discrimination,that is,we prove that the geometric discord of tripartite states is equal to the minimum error probability to discriminate a set of quantum states with von Neumann measurement.Lastly,we calculate the geometric discord of three-qubit Bell diagonal states and then investigate the dynamic behavior of tripartite geometric discord under local decoherence.It is interesting that the frozen phenomenon exists for geometric discord in this scenario.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174024)the State Key Laboratory of Low-Dimensional Quantum Physics(Tsinghua University)(Grant No.KF201407)+1 种基金the Fundamental Research Funds for the Central Universities of Beihang University(Grant No.YWF-14-WLXY-017)Beijing City Youth Talent Plan
文摘Geometric quantum discord(GQD) and Berry phase between two charge qubits coupled by a quantum transmission line are investigated. We show how GQDs evolve and investigate their dependencies on the parameters of the system.We also calculate the energy and the Berry phase and compare them with GQD, finding that there are close connections between them.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604090)
文摘We studied quantum correlation and quantum entanglement of a quantum system in which a coherent state light field interacts with two qubits that are initially prepared in a separable and mixed state.The influence of mean photon number of the coherent field and distribution probability of the atom on the geometrical quantum discord and the negativity are discussed.Our results show that the mean photon number of light field and distribution function of the atom can regulate and control the quantum correlation and quantum entanglement.
基金Project supported by the National Natural Science Foundation of China(Grant No.11772177)。
文摘We study the dynamics of geometric quantum discord(GQD) between two qubits,each qubit interacting at the same time with K independent multiple bosonic reservoirs at zero temperature.In both weak and strong qubit-reservoirs coupling regimes,we find that the increase of the number K of reservoirs can induce the damped oscillation of GQD,and enhance the memory effects of the overall environment.And the Hilbert-Schmidt norm GQD(two-norm GQD) is always smaller than the trace norm geometric quantum discord(one-norm GQD).Therefore,the one-norm GQD is a better way to measure the quantum correlation.Finally,we propose an effective strategy to improve GQD by using partially collapsing measurements,and we find that the protection effect is better with the increase of the weak measurement strength.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11275131,11305105,and 11271138)Simons Foundation(Grant No.198129)
文摘We consider the geometric global quantum discord (GGQD) of two-qubit systems. By analyzing the symmetry of geometric global quantum discord we give an approach for deriving analytical formulae of the extremum problem which lies at the core of computing the GGQD for arbitrary two-qubit states. Furthermore, formulae of GGQD of arbitrary two-qubit states and some concrete examples are presented.
文摘Instead of projective measurement, we use weak measurement to define quantum and geometric discords, and compare them with the normal quantum and geometric discords based on the projective measurement in noninertial frames. We find that using weak measurement to define quantum discord we can capture more quantum correlations compared with the projective measurement, so calling it super quantum discord. However, we note that the geometric discord based on the weak measurements becomes smaller, so we name it inferior “geometric discord”. We also show that, although both the super quantum discord and the inferior “geometric discord” decrease with the increase of observer’s acceleration, the super quantum discord/inferior “geometric discord” increases/decreases as the measurements become weak. These differences reveal that the definitions of the quantum and geometric discords are not too concordant with each other.
文摘Dynamics of measurement-induced-nonlocality (MIN) and geometric measure of discord (GD) in the spin-boson model is studied. Analytical results show that for two large classes of initial states, MINs are equal but GDs are different. At the end of evolution, MIN and GD initially stored in the spin system transfer completely to reservoirs. The quantum beats for MIN and GD are also found which are the results of quantum interference between two local non-Markovian dynamics via quantum correlation.
基金supported by the National Natural Science Foundation of China(61502082)National Key R&D Program of China,Grant No.(2018YFA0306703).
文摘Quantum correlation shows a fascinating nature of quantum mechanics and plays an important role in some physics topics,especially in the field of quantum information.Quantum correlations of the composite system can be quantified by resorting to geometric or entropy methods,and all these quantification methods exhibit the peculiar freezing phenomenon.The challenge is to find the characteristics of the quantum states that generate the freezing phenomenon,rather than only study the conditions which generate this phenomenon under a certain quantum system.In essence,this is a classification problem.Machine learning has become an effective method for researchers to study classification and feature generation.In this work,we prove that the machine learning can solve the problem of X form quantum states,which is a problem of physical significance.Subsequently,we apply the density-based spatial clustering of applications with noise(DBSCAN)algorithm and the decision tree to divide quantum states into two different groups.Our goal is to classify the quantum correlations of quantum states into two classes:one is the quantum correlation with freezing phenomenon for both Rènyi discord(α=2)and the geometric discord(Bures distance),the other is the quantum correlation of non-freezing phenomenon.The results demonstrate that the machine learning method has reasonable performance in quantum correlation research.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11074002 and 61275119)the Specialized Research Fund for the Doc-toral Program of Higher Education of China(Grant No.20103401110003)the Personal Development Foundation of Anhui Province,China(Grant No.2008Z018)
文摘In this paper, the monogamy properties of some quantum correlations, including the geometric quantum discord, concurrence, entanglement of formation and entropy quantum discord, in the anisotropic spin-1/2 XY model with stag- gered Dzyaloshinskii-Moriya (DM) interaction have been investigated using the quantum renormalization group (QRG) method. We summarize the monogamy relation for different quantum correlation measures and make an explicit compar- ison. Through mathematical calculations and analysis, we obtain that no matter whether the QRG steps are carried out, the monogamy of the given states are always unaltered. Moreover, we conclude that the geometric quantum discord and concurrence obey the monogamy property while other quantum correlation measures, such as entanglement of formation and quantum discord, violate it for this given model.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174081,11034002,11134003,11104075,and 60708003)the National Basic Research Program of China(Grant Nos.2011CB921602 and 2012CB821302)the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University,China
文摘We investigate the characteristics of three kinds of quantum correlations, measured by pairwise quantum discord (QD), geometric measure of quantum discord (GMQD), and measurement-induced disturbance (MID), in the systems of three- and four-dipole arrays. The influence of the temperature on the three quantum correlations and entanglement of the systems is also analyzed numerically. It is found that novel quantum correlation switches called QD, GMQD, and MID respectively can be constructed with the qubits consisting of electric dipoles coupled by the dipole-dipole interaction and oriented along or against the external electric field. Moreover, with the increase of temperature, QD, GMQD, and MID are more robust than entanglement against the thermal environment. It is also found that for each dipole pair of the three- and four-dipole arrangements, the MID is always the largest and the GMQD the smallest.
基金supported by the National Natural Science Foundation of China (Grant Nos.10905024, 11005029, 11104057 and 11204061)the Key Project of Chinese Ministry of Education (Grant No. 211080)+2 种基金the Key Program of the Education Department of Anhui Province (Grant Nos. KJ2011A243, KJ2012A244 and KJ2012A245)the Anhui Provincial Natural Science Foundation (Grant Nos. 11040606M16 and 10040606Q51)the Doctoral Startup Foundation of Hefei Normal University (Grant No. 2011rcjj03)
文摘We investigate the geometric picture of the level surfaces of quantum entanglement and geometric measure of quantum discord(GMQD) of a class of X-states, respectively. This pictorial approach provides us a direct understanding of the structure of entanglement and GMQD. The dynamic evolution of GMQD under two typical kinds of quantum decoherence channels is also investigated. It is shown that there exists a class of initial states for which the GMQD is not destroyed by decoherence in a finite time interval. Furthermore, we establish a factorization law between the initial and final GMQD, which allows us to infer the evolution of entanglement under the influences of the environment.
基金Supported by National Natural Science Foundation of China under Grant No.11005002 and 11475004 New Century Excellent Talent of M.O.E(NCET-11-0937) Sponsoring Program of Excellent Younger Teachers in universities in Henan Province under Grant No.2010GGJS-181
文摘A generalization of the geometric measure of quantum discord is introduced in this article, based on Hellinger distance. Our definition has virtues of computability and independence of local measurement. In addition it also does not suffer from the recently raised critiques about quantum discord. The exact result can be obtained for bipartite pure states with arbitrary levels, which is completely determined by the Schmidt decomposition. For bipartite mixed states the exact result can also be found for a special case. Furthermore the generalization into multipartite case is direct. It is shown that it can be evaluated exactly when the measured state is invariant under permutation or translation. In addition the detection of quantum phase transition is also discussed for Lipkin–Meshkov–Glick and Dicke model.
基金supported by the National Natural Science Foundation of China(Grant Nos.12122504 and 12374408)the Natural Science Foundation of Hunan Province(Grant No.2023JJ30384).
文摘We studied the quantum correlations of a three-body Unruh-DeWitt detector system using genuine tripartite entanglement(GTE)and geometric quantum discord(GQD).We considered two representative three-body initial entangled states,namely the GHZ state and the W state.We demonstrated that the quantum correlations of the tripartite system are completely destroyed at the limit of infinite acceleration.In particular,it is found that the GQD of the two initial states exhibits“sudden change”behavior with increasing acceleration.It is shown that the quantum correlations of the W state are more sensitive than those of the GHZ state under the effect of Unruh thermal noise.The GQD is a more robust quantum resource than the GTE,and we can achieve robustness in discord-type quantum correlations by selecting the smaller energy gap in the detector.These findings provide guidance for selecting appropriate quantum states and resources for quantum information processing tasks in a relativistic setting.
文摘在文献[1]的基础上,将文献[1]中求解出消相干环境下Bell对角态的GMQD(geometric measure of quantumdiscord)方法推广到求解具有普遍形式的X-态的GMQD,并在求出一般形式X-态在3种不同消干环境的GMQD后,将结果应用于Bell对角态进行验证,能得到与文献[1]一致的形式.