期刊文献+
共找到2,374篇文章
< 1 2 119 >
每页显示 20 50 100
Gradient Recovery Based Two-Grid Finite Element Method for Parabolic Integro-Differential Optimal Control Problems
1
作者 Miao Yang 《Journal of Applied Mathematics and Physics》 2024年第8期2849-2865,共17页
In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and ... In this paper, the optimal control problem of parabolic integro-differential equations is solved by gradient recovery based two-grid finite element method. Piecewise linear functions are used to approximate state and co-state variables, and piecewise constant function is used to approximate control variables. Generally, the optimal conditions for the problem are solved iteratively until the control variable reaches error tolerance. In order to calculate all the variables individually and parallelly, we introduce a gradient recovery based two-grid method. First, we solve the small scaled optimal control problem on coarse grids. Next, we use the gradient recovery technique to recover the gradients of state and co-state variables. Finally, using the recovered variables, we solve the large scaled optimal control problem for all variables independently. Moreover, we estimate priori error for the proposed scheme, and use an example to validate the theoretical results. 展开更多
关键词 Optimal Control problem Gradient Recovery Two-Grid finite element method
下载PDF
Self-adaptive one-dimensional nonlinear finite element method based on element energy projection method 被引量:16
2
作者 袁驷 杜炎 +1 位作者 邢沁妍 叶康生 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第10期1223-1232,共10页
The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear probl... The element energy projection (EEP) method for computation of super- convergent resulting in a one-dimensional finite element method (FEM) is successfully used to self-adaptive FEM analysis of various linear problems, based on which this paper presents a substantial extension of the whole set of technology to nonlinear problems. The main idea behind the technology transfer from linear analysis to nonlinear analysis is to use Newton's method to linearize nonlinear problems into a series of linear problems so that the EEP formulation and the corresponding adaptive strategy can be directly used without the need for specific super-convergence formulation for nonlinear FEM. As a re- sult, a unified and general self-adaptive algorithm for nonlinear FEM analysis is formed. The proposed algorithm is found to be able to produce satisfactory finite element results with accuracy satisfying the user-preset error tolerances by maximum norm anywhere on the mesh. Taking the nonlinear ordinary differential equation (ODE) of second-order as the model problem, this paper describes the related fundamental idea, the imple- mentation strategy, and the computational algorithm. Representative numerical exam- ples are given to show the efficiency, stability, versatility, and reliability of the proposed approach. 展开更多
关键词 nonlinearITY finite element method (FEM) self-adaptive analysis super-convergence element energy projection (EEP)~ ordinary differential equation(ODE)
下载PDF
TWO-LEVEL MULTISCALE FINITE ELEMENT METHODS FOR THE STEADY NAVIER-STOKES PROBLEM 被引量:2
3
作者 文娟 何银年 +1 位作者 王学敏 霍米会 《Acta Mathematica Scientia》 SCIE CSCD 2014年第3期960-972,共13页
In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique ... In this article, on the basis of two-level discretizations and multiscale finite element method, two kinds of finite element algorithms for steady Navier-Stokes problem are presented and discussed. The main technique is first to use a standard finite element discretization on a coarse mesh to approximate low frequencies, then to apply the simple and Newton scheme to linearize discretizations on a fine grid. At this process, multiscale finite element method as a stabilized method deals with the lowest equal-order finite element pairs not satisfying the inf-sup condition. Under the uniqueness condition, error analyses for both algorithms are given. Numerical results are reported to demonstrate the effectiveness of the simple and Newton scheme. 展开更多
关键词 Multiscale finite element method two-level method error analysis the Navier- Stokes problem
下载PDF
A Priori and A Posteriori Error Estimates of Streamline Diffusion Finite Element Method for Optimal Control Problem Governed by Convection Dominated Diffusion Equation 被引量:5
4
作者 Ningning Yan Zhaojie Zhou 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2008年第3期297-320,共24页
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc... In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results. 展开更多
关键词 Constrained optimal control problem convection dominated diffusion equation stream-line diffusion finite element method a priori error estimate a posteriori error estimate.
下载PDF
Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions 被引量:3
5
作者 Yan Gong Zhilin Li 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第1期23-39,共17页
In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body... In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence. 展开更多
关键词 Immersed interface finite element methods elasticity interface problems singularity removal homogeneous and non-homogeneous jump conditions level-set function.
下载PDF
P_1-nonconforming triangular finite element method for elliptic and parabolic interface problems 被引量:2
6
作者 Hongbo GUAN Dongyang SHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第9期1197-1212,共16页
The lowest order Pl-nonconforming triangular finite element method (FEM) for elliptic and parabolic interface problems is investigated. Under some reasonable regularity assumptions on the exact solutions, the optima... The lowest order Pl-nonconforming triangular finite element method (FEM) for elliptic and parabolic interface problems is investigated. Under some reasonable regularity assumptions on the exact solutions, the optimal order error estimates are obtained in the broken energy norm. Finally, some numerical results are provided to verify the theoretical analysis. 展开更多
关键词 P1-nonconforming finite element method (FEM) interface problem opti-mal order error estimate
下载PDF
THE TWO-LEVEL STABILIZED FINITE ELEMENT METHOD BASED ON MULTISCALE ENRICHMENT FOR THE STOKES EIGENVALUE PROBLEM 被引量:2
7
作者 Juan WEN Pengzhan HUANG Ya-Ling HE 《Acta Mathematica Scientia》 SCIE CSCD 2021年第2期381-396,共16页
In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The co... In this paper,we first propose a new stabilized finite element method for the Stokes eigenvalue problem.This new method is based on multiscale enrichment,and is derived from the Stokes eigenvalue problem itself.The convergence of this new stabilized method is proved and the optimal priori error estimates for the eigenfunctions and eigenvalues are also obtained.Moreover,we combine this new stabilized finite element method with the two-level method to give a new two-level stabilized finite element method for the Stokes eigenvalue problem.Furthermore,we have proved a priori error estimates for this new two-level stabilized method.Finally,numerical examples confirm our theoretical analysis and validate the high effectiveness of the new methods. 展开更多
关键词 TWO-LEVEL multiscale finite element method P_(1)/P_(1)elements the Stokes eigenvalue problem
下载PDF
ACCURACY ENHANCEMENT FOR THE SIGNORINI PROBLEM WITH FINITE ELEMENT METHOD 被引量:1
8
作者 李明霞 陈竑焘 毛士鹏 《Acta Mathematica Scientia》 SCIE CSCD 2011年第3期897-908,共12页
In this paper,we study the accuracy enhancement for the frictionless Signorini problem on a polygonal domain with linear finite elements.Numerical test is given to verify our result.
关键词 finite element methods the Signorini problem SUPERCONVERGENCE
下载PDF
Implementing the Node Based Smoothed Finite Element Method as User Element in Abaqus for Linear and Nonlinear Elasticity 被引量:2
9
作者 S.Kshrisagar A.Francis +2 位作者 J.J.Yee S.Natarajan C.K.Lee 《Computers, Materials & Continua》 SCIE EI 2019年第8期481-502,共22页
In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element... In this paper,the node based smoothed-strain Abaqus user element(UEL)in the framework of finite element method is introduced.The basic idea behind of the node based smoothed finite element(NSFEM)is that finite element cells are divided into subcells and subcells construct the smoothing domain associated with each node of a finite element cell[Liu,Dai and Nguyen-Thoi(2007)].Therefore,the numerical integration is globally performed over smoothing domains.It is demonstrated that the proposed UEL retains all the advantages of the NSFEM,i.e.,upper bound solution,overly soft stiffness and free from locking in compressible and nearly-incompressible media.In this work,the constant strain triangular(CST)elements are used to construct node based smoothing domains,since any complex two dimensional domains can be discretized using CST elements.This additional challenge is successfully addressed in this paper.The efficacy and robustness of the proposed work is obtained by several benchmark problems in both linear and nonlinear elasticity.The developed UEL and the associated files can be downloaded from https://github.com/nsundar/NSFEM. 展开更多
关键词 Smoothed finite element method(SFEM) node based SFEM(NSFEM) linear and nonlinear elasticity Abaqus UEL(user elements) compressible and nearlyincompressible materials
下载PDF
Streamline upwind finite element method using 6-node triangular element with adaptive remeshing technique for convective-diffusion problems 被引量:1
10
作者 Niphon Wansophark Pramote Dechaumphai 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第11期1439-1450,共12页
A streamline upwind finite element method using 6-node triangular element is presented. The method is applied to the convection term of the governing transport equation directly along local streamlines. Several convec... A streamline upwind finite element method using 6-node triangular element is presented. The method is applied to the convection term of the governing transport equation directly along local streamlines. Several convective-diffusion examples are used to evaluate efficiency of the method. Results show that the method is monotonic and does not produce any oscillation. In addition, an adaptive meshing technique is combined with the method to further increase accuracy of the solution, and at the same time, to minimize computational time and computer memory requirement. 展开更多
关键词 streamline upwind finite element method convective-diffusion problem
下载PDF
RANDOM MICROSTRUCTURE FINITE ELEMENT METHOD FOR EFFECTIVE NONLINEAR PROPERTIES OF COMPOSITE MATERIALS
11
作者 瞿鹏程 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2000年第2期1-6,共6页
Some theoretical methods have been reported to deal with nonlinear problems of composite materials but the accuracy is not so good. In the meantime, a lot of linear problems are difficult to be managed by the theoreti... Some theoretical methods have been reported to deal with nonlinear problems of composite materials but the accuracy is not so good. In the meantime, a lot of linear problems are difficult to be managed by the theoretical methods. The present study aims to use the developed method, the random microstructure finite element method, to deal with these nonlinear problems. In this paper, the random microstructure finite element method is used to deal with all three kinds of nonlinear property problems of composite materials. The analyzed results suggest the influences of the nonlinear phenomena on the effective properties of composite materials are significant and the random microstructure finite element method is an effective tool to investigate the nonlinear problems. 展开更多
关键词 random microstructure finite element method effective property composite materials nonlinear property problems
下载PDF
NONLINEAR QUASI-CONFORMING FINITE ELEMENT METHOD
12
作者 关玉璞 唐立民 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1993年第3期269-276,共8页
The nonlinear quasi-conforming FEM is presented based on the basic concept of the quasi- -conforming finite element. First, the incremental principle of stationary potential energy is discussed, Then, the formulation ... The nonlinear quasi-conforming FEM is presented based on the basic concept of the quasi- -conforming finite element. First, the incremental principle of stationary potential energy is discussed, Then, the formulation process of the nonlinear quasi-conforming FEM is given. Lastly, two computational examples of shells are given. 展开更多
关键词 incremental principle of potential energy quasi-conforming finite element method nonlinearITY
下载PDF
Quasi-optimal complexity of adaptive finite element method for linear elasticity problems in two dimensions
13
作者 Chunmei LIU Liuqiang ZHONG +1 位作者 Shi SHU Yingxiong XIAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第2期151-168,共18页
This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination ... This paper introduces an adaptive finite element method (AFEM) using the newest vertex bisection and marking exclusively according to the error estimator without special treatment of oscillation. By the combination of the global lower bound and the localized upper bound of the posteriori error estimator, perturbation of oscillation, and cardinality of the marked element set, it is proved that the AFEM is quasi-optimal for linear elasticity problems in two dimensions, and this conclusion is verified by the numerical examples. 展开更多
关键词 linear elasticity problem adaptive finite element method (AFEM) quasioptimal complexity
下载PDF
Finite Element Methods for Coupled Stokes and Darcy Problems
14
作者 梁涛 冯民富 祁瑞生 《Journal of Southwest Jiaotong University(English Edition)》 2009年第3期265-270,共6页
We derived and analyzed a new numerical scheme for the coupled Stokes and Darcy problems by using H(div) conforming elements in the entire domain. The approach employs the mixed finite element method for the Darcy e... We derived and analyzed a new numerical scheme for the coupled Stokes and Darcy problems by using H(div) conforming elements in the entire domain. The approach employs the mixed finite element method for the Darcy equations and a stabilized H(div) finite element method for the Stokes equations. Optimal error estimates for the fluid velocity and pressure are derived. The finite element solutions from the new scheme not only feature a full satisfaction of the continuity equation, which is highly demanded in scientific computing, but also satisfy the mass conservation. 展开更多
关键词 finite element method Mass conservation Beavers-Joseph-Saffman condition Stockes and Darcy problems
下载PDF
A Brief Summary of Finite Element Method Applications to Nonlinear Wave-structure Interactions
15
作者 王赤忠 吴国雄 《Journal of Marine Science and Application》 2011年第2期127-138,共12页
We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. ... We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. The present paper has six sections. A review of previous work on interactions between waves and ocean structures is presented in Section one. Section two gives the mathematical formulation. In Section three, the finite element discretization, mesh generation and the finite element linear system solution methods are described. Section four presents numerical methods including time marching schemes, computation of velocity, remeshing and smoothing techniques and numerical radiation conditions. The application of the FEM to the wave-structure interactions are presented in Section five followed by the concluding remarks in Section six. 展开更多
关键词 finite element method (FEM) mesh generation nonlinear water waves wave-structure interactions
下载PDF
An Adaptive Finite Element Method Based on Optimal Error Estimates for Linear Elliptic Problems
16
作者 汤雁 《Transactions of Tianjin University》 EI CAS 2004年第3期225-228,共4页
The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element met... The subject of the work is to propose a series of papers about adaptive finite element methods based on optimal error control estimate. This paper is the third part in a series of papers on adaptive finite element methods based on optimal error estimates for linear elliptic problems on the concave corner domains. In the preceding two papers (part 1:Adaptive finite element method based on optimal error estimate for linear elliptic problems on concave corner domain; part 2:Adaptive finite element method based on optimal error estimate for linear elliptic problems on nonconvex polygonal domains), we presented adaptive finite element methods based on the energy norm and the maximum norm. In this paper, an important result is presented and analyzed. The algorithm for error control in the energy norm and maximum norm in part 1 and part 2 in this series of papers is based on this result. 展开更多
关键词 adaptive finite element method concave corner domain elliptic problems
下载PDF
A Posteriori Error Estimates for Finite Element Methods for Systems of Nonlinear,Dispersive Equations
17
作者 Ohannes A.Karakashian Michael M.Wise 《Communications on Applied Mathematics and Computation》 2022年第3期823-854,共32页
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite ... The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators. 展开更多
关键词 finite element methods Discontinuous Galerkin methods Korteweg-de Vries equation A posteriori error estimates Conservation laws nonlinear equations Dispersive equations
下载PDF
Finite Element Method Based on Equivalent Magnetic Energy Method for Computation of 2D Nonlinear Eddy Current Field
18
作者 朱守军 邓康 屠关镇 《Advances in Manufacturing》 SCIE CAS 1997年第3期252-256,共5页
In this paper, the finite element method using vector potential in applications to 2D nonlinear eddy current field is discussed. The authors use the equivalent magnetic energy method to deal with magnetization curve o... In this paper, the finite element method using vector potential in applications to 2D nonlinear eddy current field is discussed. The authors use the equivalent magnetic energy method to deal with magnetization curve of ferromagnetic material,and present the formulation of 2D nonlinear eddy current field.With this method the authors analyze the eddy current field in an induction ladle furnace and the force distribution in the charge (molten metal),and plot the corresponding curves. 展开更多
关键词 eddy current field finite element method.nonlinear
下载PDF
A WEIGHTED PENALTY FINITE ELEMENT METHOD FOR THE ANALYSIS OF POWER-LAW FLUID FLOW PROBLEMS
19
作者 陈大鹏 赵忠 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第4期297-300,共4页
In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an al... In this paper, a new finite element method for the flow analysis of the viscous incompressible power-law fluid is proposed by the use of penalty-hybrid/mixed finite element formulation and by the introduction of an alternative perturbation, which is weighted by viscosity, of the continuity equation. A numerical example is presented to exhibit the efficiency of the method. 展开更多
关键词 A WEIGHTED PENALTY finite element method FOR THE ANALYSIS OF POWER-LAW FLUID FLOW problemS
下载PDF
Analytical Model of Nonlinear Semi-rigid Frames Using Finite Element Method
20
作者 Shahrin Mohammad Ahmad Baharuddin Abd Rahman +1 位作者 Cher Siang Tan Yeong Huei Lee 《Journal of Architectural Environment & Structural Engineering Research》 2020年第4期22-27,共6页
Performance-based design for a constructional steel frame in nonlinear-plastic region requires an improvement in order to achieve a reliable structural analysis.The need to explicitly consider the nonlinear behaviour ... Performance-based design for a constructional steel frame in nonlinear-plastic region requires an improvement in order to achieve a reliable structural analysis.The need to explicitly consider the nonlinear behaviour of structures makes the numerical modelling approach much more favourable than expensive and potentially dangerous experimental work.The parameters considered in the analysis are not limited to the linear change of geometry and material yielding,but also include the effect of large deformations,geometrical imperfections,load eccentricities,residual stresses,strain-unloading,and the nonlinear boundary conditions.Such analysis requires the use of accurate mathematical modelling and effective numerical procedures for solving equations of equilibrium.With that in mind,this paper presents the mathematical formulations and finite element procedures of nonlinear inelastic steel frame analysis with quasi-static semi-rigid connections.Verification and validation of the developed analytical procedures are conducted and good agreements are obtained.It is an approach that enables the structural behaviour of constructional steel frames to be traced throughout the entire range of loading until failure.It also provides information on the derivation of the structural analysis by using finite element method. 展开更多
关键词 finite element method nonlinearITY Steel frame Semi-rigid connection
下载PDF
上一页 1 2 119 下一页 到第
使用帮助 返回顶部