期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
FINITE ELEMENT ANALYSIS OF THERMOELASTIC BEHAVIOR OF PIEZOELECTRIC STRUCTURES UNDER FINITE DEFORMATION 被引量:3
1
作者 Tian Xiaogeng Shen Yapeng 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第4期312-322,共11页
It is noted that the behavior of most piezoelectric materials is temperaturedependent and such piezo-thermo-elastic coupling phenomenon has become even more pronounced in thecase of finite deformation. On the other ha... It is noted that the behavior of most piezoelectric materials is temperaturedependent and such piezo-thermo-elastic coupling phenomenon has become even more pronounced in thecase of finite deformation. On the other hand, for the purpose of precise shape and vibrationcontrol of piezoelectric smart structures, their deformation under external excitation must beideally modeled. This demands a thorough study of the coupled piezo-thermo-elastic response underfinite deformation. In this study, the governing equations of piezoelectric structures areformulated through the theory of virtual displacement principle and a finite element method isdeveloped. It should be emphasized that in the finite element method the fully coupledpiezo-thermo-elastic behavior and the geometric non-linearity are considered. The method developedis then applied to simulate the dynamic and steady response of a clamped plate to heat flux actingon one side of the plate to mimic the behavior of a battery plate of satellite irradiated under thesun. The results obtained are compared against classical solutions, whereby the thermal conductivityis assumed to be independent of deformation. It is found that the full-coupled theory predicts lesstransient response of the temperature compared to the classic analysis. In the steady state limit,the predicted temperature distribution within the plate for small heat flux is almost the same forboth analyses. However, it is noted that increasing the heat flux will increase the deviationbetween the predictions of the temperature distribution by the full coupled theory and by theclassic analysis. It is concluded from the present study that, in order to precisely predict thedeformation of smart structures, the piezo-thermo-elastic coupling, geometric non-linearity and thedeformation dependent thermal conductivity should be taken into account. 展开更多
关键词 finite deformation thermal-mechanical coupling geometricalnon-linearity heat conduction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部