When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focu...When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focuses on constrained geometry analysis to resolve 3-D deformations from three GB-rads.The geometric dilution of precision(GDOP)is utilized to evaluate 3-D deformation accuracy of a single target,and its theoretical equation is derived by building a simplified 3-D coordinate system.Then for a 3-D scene,its optimal accuracy problem is converted into determining the minimum value of an objective function with a boundary constraint.The genetic algorithm is utilized to solve this constrained optimization problem.Numerical simulations are made to validate the correctness of the theoretical analysis results.展开更多
Crystal and molecular structure of (2.6-dipropylphenylamidc) dimethyl (tetra-methyl cyclopentadienyl) silane titanium dichloride (I) was fully characterized by X-ray diffraction. The crystal is obtained tyom a mixture...Crystal and molecular structure of (2.6-dipropylphenylamidc) dimethyl (tetra-methyl cyclopentadienyl) silane titanium dichloride (I) was fully characterized by X-ray diffraction. The crystal is obtained tyom a mixture of ether/hexane as orthorhombic, with a = 12.658 (3 ) A. b = 16.62 (3) A. c = 11 .760 (2) A. V = 2474,2 (9) A. Z = 4. space group Pnma. R = 0.0399. Compound I compose of the R -bounded ring with its dimethylsilyl-dipropyl phenyl amido group and the two terminal chloride atoms coordinated to central metal to form a so-called constrained geometry catalyst (CGC) structure. The result of molecular mechanics (MM) calculations on compound I shows that bond lengths and bond angles from the MM calculation are comparable to the data obtained from the X-ray diffraction study. The relation of the structure of CGCs and their catalytic activity by MM calculations is also discussed.展开更多
Iron sites in both nitrogenase enzymes and chemical catalysts for N_(2) fixation are typically at constrained distances and angles.Herein,we report a one-electron reduction reaction realized by constrained diiron dini...Iron sites in both nitrogenase enzymes and chemical catalysts for N_(2) fixation are typically at constrained distances and angles.Herein,we report a one-electron reduction reaction realized by constrained diiron dinitrogen cores.Using the semicircular bis(β-diketiminate)ligand,a series of diiron dinitrogen complexes were synthesized,in which the N_(2) groups were allowed to bind with Fe-Ct_(N2)-Fe angles ranging from 154°to 158°(Ct_(N2)=centroid of N_(2)).One-electron reduction of complex 2a[LFe(μ-N_(2))Fe(Et_(2)O)]gave dimer product 3a[LFe(μ-N_(2))FeK]_(2)(μ-N_(2))or monomer 3b[LFe(μ-N_(2))Fe(DMAP)K].Based on superconducting quantum interference device measurements and density functional theory calculations,2a,3a,and 3b exhibited ground spin states of S=3,S=5,and S=5/2,respectively.In addition,complex 3 underwent N_(2)derivatization via a silylation pathway followed by an acidic cleavage to yield N_(2)H_(4)as the product.展开更多
基金supported by the National Natural Science Foundation of China(61960206009,61971037,31727901)the Natural Science Foundation of Chongqing+1 种基金China(2020jcyj-jq X0008)Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-warning in Three Gorges Reservoir Area(ZD2020A0101)。
文摘When multiple ground-based radars(GB-rads)are utilized together to resolve three-dimensional(3-D)deformations,the resolving accuracy is related with the measurement geometry constructed by these radars.This paper focuses on constrained geometry analysis to resolve 3-D deformations from three GB-rads.The geometric dilution of precision(GDOP)is utilized to evaluate 3-D deformation accuracy of a single target,and its theoretical equation is derived by building a simplified 3-D coordinate system.Then for a 3-D scene,its optimal accuracy problem is converted into determining the minimum value of an objective function with a boundary constraint.The genetic algorithm is utilized to solve this constrained optimization problem.Numerical simulations are made to validate the correctness of the theoretical analysis results.
基金This xvork ovas suppoT'ted by the National Natural Science Foundation. SINOPEC under grant! No.29734141. the Foundation of
文摘Crystal and molecular structure of (2.6-dipropylphenylamidc) dimethyl (tetra-methyl cyclopentadienyl) silane titanium dichloride (I) was fully characterized by X-ray diffraction. The crystal is obtained tyom a mixture of ether/hexane as orthorhombic, with a = 12.658 (3 ) A. b = 16.62 (3) A. c = 11 .760 (2) A. V = 2474,2 (9) A. Z = 4. space group Pnma. R = 0.0399. Compound I compose of the R -bounded ring with its dimethylsilyl-dipropyl phenyl amido group and the two terminal chloride atoms coordinated to central metal to form a so-called constrained geometry catalyst (CGC) structure. The result of molecular mechanics (MM) calculations on compound I shows that bond lengths and bond angles from the MM calculation are comparable to the data obtained from the X-ray diffraction study. The relation of the structure of CGCs and their catalytic activity by MM calculations is also discussed.
基金supported by National Natural Science Foundation of China(grant nos.21988101,22201013,92161204)China Postdoctoral Science Foundation(grant no.2020M670016)Beijing Natural Science Foundation(grant no.2222008).
文摘Iron sites in both nitrogenase enzymes and chemical catalysts for N_(2) fixation are typically at constrained distances and angles.Herein,we report a one-electron reduction reaction realized by constrained diiron dinitrogen cores.Using the semicircular bis(β-diketiminate)ligand,a series of diiron dinitrogen complexes were synthesized,in which the N_(2) groups were allowed to bind with Fe-Ct_(N2)-Fe angles ranging from 154°to 158°(Ct_(N2)=centroid of N_(2)).One-electron reduction of complex 2a[LFe(μ-N_(2))Fe(Et_(2)O)]gave dimer product 3a[LFe(μ-N_(2))FeK]_(2)(μ-N_(2))or monomer 3b[LFe(μ-N_(2))Fe(DMAP)K].Based on superconducting quantum interference device measurements and density functional theory calculations,2a,3a,and 3b exhibited ground spin states of S=3,S=5,and S=5/2,respectively.In addition,complex 3 underwent N_(2)derivatization via a silylation pathway followed by an acidic cleavage to yield N_(2)H_(4)as the product.