Understanding the topography in active tectonic areas and assessing the rates and models of active deformation in the upper crust are primary objectives in tectonic geomorphology studies. The drainage pattern of river...Understanding the topography in active tectonic areas and assessing the rates and models of active deformation in the upper crust are primary objectives in tectonic geomorphology studies. The drainage pattern of river systems is highly sensitive to tectonically induced changes, and it often preserves the records of the formation and progression of most tectono-geomorphic processes within its boundaries. Therefore, the evolution of landforms is a consequence of the evolution of individual drainage basins in which they are formed. Assessing the rates of tectonic deformation using geomorphic data is a traditionally adopted method to characterize the nature of active faults. Globally, the Digital Elevation Model(DEM) is widely used as a crucial tool to analyze the morphotectonic features of drainage basins. In this study, some geomorphic indices were applied to investigate the impact of tectonism on landscape along the Karahay?t Fault and its associated drainage areas. These geomorphic indices are mountain front sinuosity(Smf values between 1.17-1.52), valley floor width-to-height ratio(Vf values between 0.25-1.46), basin asymmetry factor(AF values between 15-72), drainage basin shape(Bs values between 3.18-6.01), hypsometric integral and curve(HI values between 0.32-047), channel sinuosity(S values between 1-1.6), normalized steepness index(Ksn values between 1-390) and Chi integral(χ values between 200-4400). The development of drainage areas on the hanging wall and footwall block of the Karahayit Fault differs depending on the uplift. The drainage areas developed on the hanging wall present different patterns depending on the regional uplift caused by the fault. This reveals that the fault contributed significantly to the development of drainage areas and regional uplift in the region. In addition, the maximum earthquake magnitude that may occur in the future on the Karahayit Fault, whose activity is supported by geomorphic indices, is calculated as 6.23. Since an earthquake of this magnitude may cause loss of life and property in the region, precautions should be taken.展开更多
Quantitative geomorphic analyses are usually powerful in identifying active tectonics across global orogenic belts.Our present study will focus on the Anatolian Plate which hosts a lot of recent catastrophic earthquak...Quantitative geomorphic analyses are usually powerful in identifying active tectonics across global orogenic belts.Our present study will focus on the Anatolian Plate which hosts a lot of recent catastrophic earthquakes in Türkiye.Six geomorphic indices for 100 sub-basins around Türkiye have been computed including local relief,slope,normalized steepness index(k_(Sn)),hypsometric curve and integral(HI),transverse topographic symmetry factor(Tf),and the basin asymmetry factor(Af).The averaged kSnand Af values have shown four high-value anomalous zones,suggesting relatively high uplift rates featured by high river incision and regional tilting.The values of 0.35≤HI<0.6 for basins with S-shaped curves imply intensive tectonic activities along the eastern part of the North Anatolian Fault Zone(NAFZ),the Northeast Anatolian Fault Zone(NEAFZ),the East Anatolian Fault Zone(EAFZ),and the Central Anatolian Fault Zone(CAFZ).All results of the geomorphic indices analysis suggest a relatively high degree of tectonic activity in the following four areas,the Isparta Angle,the Eastern Black Sea Mountains,the South-eastern Anatolia Region,and the Central Anatolian fault zone.We further suggest that the eastern part of the NAFZ,NEAFZ,EAFZ,and CAFZ will be more active in tectonic activities,with a greater potential for strong earthquake occurrence.展开更多
The Yaounde Group(YG),representing the southern edge of the North Equatorial PanAfrican Belt,consists of quartzites,schists,micaschists,amphibolites,gneisses and migmatites.Tectonism has formed a landscape characteriz...The Yaounde Group(YG),representing the southern edge of the North Equatorial PanAfrican Belt,consists of quartzites,schists,micaschists,amphibolites,gneisses and migmatites.Tectonism has formed a landscape characterized by the development of linear and folded valleys and ridges,fault scarps,V-shaped valleys,incised rivers and knickpoints.These landforms constitute important markers of the regional tectonic activity,which have been computed from spatial sources such as SRTM,DEM,hydrographical networks and geomorphic indices such as AF,T,Smf,Vf,Bs,Hi,U,SI and Li.The results highlighted a mature relief consisting of asymmetric basins generated by tilting and uplift phenomena.The relative index of active tectonics(RIAT)has been estimated from an average of eight geomorphic indices evaluated on 24 subbasins,in the study area.Four classes have been defined:class 1(1.38),very high active(1.0≤RIAT<1.5);class 2(1.50-1.88),high active(1.5≤RIAT<2.0);and class 3(2.00-2.13)moderate active(2.0≤RIAT<2.5).These three classes,respectively covering 10.20%(458 km2),80.10%(3595 km2)and 9.69%(435 km2)of the study area,have shown a highly active tectonic zone,and imply the existence of a neotectonic event in the YG.This tectonic unit(YG)was also affected by the dextral NW-SE strike-slip faulting,which cross-cut the Sanaga Shear Zone(SSZ)at Ebebda and the foliation oriented NW-SE.The tilting and uplift of rocks related to Moho ascending are responsible for crustal thinning in the Cameroon basement,more important to the Adamawa Plateau from the Cretaceous age and the reactivation of existing tectonic accidents.The presence of hills,fault scarps,reverse faults,knickpoints,V and U shaped valleys and rounded mountains testify to the interaction between tectonic uplift,lithology,climate,weathering and erosion.展开更多
There are various faults in northern and southern margins of Torbat-e-Jam-Fariman plain which show the probability of enormous earthquake in the future.In present study the geomorphic indices contain Asymmetry Functio...There are various faults in northern and southern margins of Torbat-e-Jam-Fariman plain which show the probability of enormous earthquake in the future.In present study the geomorphic indices contain Asymmetry Function(Af),Sinuosity of mountain front(Smf),Valley floor index(Vf),Hypsometric index(Hi),Mean Axial slope of channel index(MASC)and Drainage Basin Shape(Bs),have been utilized to determine the relative tectonic activity index(IAT)to recognize,eventually,the geo-structural model of the study area.Faults and folds control the geo-structural activities of the study area,and the geomorphic indices are being affected in consequence of their activities.The intensity of these activities is different throughout the plain.There are many geomorphic evidences,related to active transform fault which are detectable all over the study area such as deviated rivers,quaternary sediments transformation,fault traces.Therefore,recognition of geo-structural model of the study area is extremely vital.Field study,then,approved the results of geomorphic indices calculation in determining the geo-structural model of the study area.Results depicted that the geostructural model of the study area is a kind of Horsetail splay form which is in accordance to the relative tectonic activity of the study area.Based on the above mentioned results it can be predicted that the splays are the trail of Neyshabour fault.展开更多
Torrential processes are among the main actors responsible for sediment production and mobility in mountain catchments.For this reason,the understanding of preferential pathways for sediment routing has become a prior...Torrential processes are among the main actors responsible for sediment production and mobility in mountain catchments.For this reason,the understanding of preferential pathways for sediment routing has become a priority in hazard assessment and mitigation.In this context,the sediment Connectivity Index(IC)enables to analyse the existing linkage between sediment sources and the selected target(channel network or catchment outlet).The IC is a grid-based index that allows fast computation of sediment connectivity based on landscape information derived from a single Digital Terrain Model(DTM).The index computation is based on the log-ratio between an upslope and a downslope component,including information about drainage area,slope,terrain roughness,and distance to the analysis target(e.g.outlet).The output is a map that highlights the degree of structural connectivity of sediment pathways over analysed catchments.Until now,these maps are however rarely used to help defining debris-flow hazard maps,notably due to a lack of guidelines to interpret the IC spatial distribution.This paper proposes an exploitation procedure along profiles to extract more information from the analysis of mapped IC values.The methodology relies on the analysis of the IC and its component variables along the main channel profile,integrated with information about sediment budgeting derived from Difference of DEMs(DoD).The study of connectivity was applied in the unmanaged sub-catchment(without torrent control works)of the Rio Soial(Autonomous Province of Trento–NE Italy)to understanding the geomorphic evolution of the area after five debris flows(in ten years)and the related changes of sediment connectivity.Using a recent DTM as validation,we demonstrated how an IC analysis over the older DTM can help predicting geomorphic changes and associated hazards.The results show an IC aptitude to capture geomorphic trajectories,anticipate debris flow deposits in a specific channel location,and depict preferential routing pathways.展开更多
The foothill belts of Tianshan Mountains are about 280 km long and 60 km wide, and the study area extends from Kuitun city to Fukang city. They are transitional belts between mountains and plains, appearing in three r...The foothill belts of Tianshan Mountains are about 280 km long and 60 km wide, and the study area extends from Kuitun city to Fukang city. They are transitional belts between mountains and plains, appearing in three rows of folds with different morphologies and their age becoming younger from south to north. Based on GIS and RS methods, and materials of the previous researchers, this paper deals with the genetics of the foothill belts and their landscape features resulting from folding by neotectonic movements, and also describes their length, width and slope by remote sensing image interpretation. The characteristics of the foothill belts are found to be very important for the surrounding environment by preventing groundwater from flowing into plains, changing groundwater, increasing flow of surface runoff, in addition to their roles in protecting the surrounding environment. The purpose of this paper is to provide an in-depth understanding of the foothill belts and influence on its surrounding environment.展开更多
Although anastomosing fluvial rivers are given much attention recently by some research workers because the result channel sandstone of which is one typical primary reservoirs of petroleum and natural gas, of which th...Although anastomosing fluvial rivers are given much attention recently by some research workers because the result channel sandstone of which is one typical primary reservoirs of petroleum and natural gas, of which the flood plains and the interchannel wetlands are pay zones where coals had formed, the comprehension of anastomosing river is some extent limited at present. Some researchers regard that the anastomosing river river and the anabranched river are the same kind of rivers. In this paper, the sedimentary, geomorphic and hydraulic characteristics and the main controlling factors of anastomosing fluvial system are summarized systematically. Some of the characteristics are compared with others fluvial rivers. Humid climate is suitable to form anastomosing channel systems, in arid semiarid regions anastomosing river maybe develop if many befitting factors combine together. The authors of the paper think that anastomosing river is one typical channel pattern and is dissimilar to anabranched channel pattern.展开更多
Buyuan River, the largest tributary within the Chinese Lancang-Mekong River region downstream of the Jinghong Dam, plays a crucial role in river function and ecosystem service of the Lancang-Mekong River. The geomorph...Buyuan River, the largest tributary within the Chinese Lancang-Mekong River region downstream of the Jinghong Dam, plays a crucial role in river function and ecosystem service of the Lancang-Mekong River. The geomorphic evolution of a basin exerts a key control on riverine sediment input and transport. In this study, the geomorphic characteristics of Buyuan Basin are analyzed using morphological parameters, hydrodynamic parameters and the stream power river incision model. The results show that: 1) The slight north-south difference of channel density is most likely due to lithology and independent of tectonic activity and climate. 2) The weak tectonic activity and the low hypsometric integral(HI) value suggest that the macroscopic landform condition limits erosion and sediment production. 3) The logarithmic longitudinal profile of the main channel defends that the upstream sediments generated by erosion are easily deposited in the downstream channel, rather than being transported directly into the Lancang-Mekong River. 4) Approximately 74% of the reaches have annual average stream power less than 500 W·m^(-1). The narrow variation ranges of stream power in 50% of the river channel indicate relatively stable hydrodynamic environment. 5) Stream erosion and tectonic activity make the longitudinal profiles of the main channel and most tributary channels unstable. The wide range(between 22.01 and 45.58 with θ=0.43) of steepness index(k_(sn)) of longitudinal profiles implies differential uplift in the basin.展开更多
Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the fiel...Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the field and a seed germination experiment in the laboratory to explore the characteristics of soil seed banks at various geomorphic positions of longitudinal sand dunes in the Gurbantunggut Desert, China. Totally, 17 plant species belonging to 17 genera and 9 families were identified in soil seed banks, and 35 plant species belonging to 34 genera and 17 families were identified in aboveground vegetation. Plant species richness in soil seed banks decreased with increasing soil depth. The highest species richness was presented in the upper slope of the windward slope and the lowest species richness was presented in the base of the windward slope. There was no significant difference in seed density of soil seed banks among the examined seven geomorphic positions. The highest seed density occurred in the lower slope of the leeward slope while the lowest occurred in the crest. Moreover, seed density decreased with increasing soil depth, being the highest in the upper soil layer (0-2 cm). For both soil seed banks and aboveground vegetation, there was no significant difference in Simpson's diversity index among the seven geomorphic positions; however, Shannon-Wiener diversity index and Pielou's evenness index showed significant differences among the seven geomorphic positions. Those results showed that although there was no significant difference in seed density of soil seed banks among the seven geomorphic positions, the geomorphic positions significantly affected the species richness, diversity and distribution of soil seed banks. Therefore, understanding the characteristics of soil seed banks at different geomorphic positions of sand dunes is essential to vegetation restoration or reestablishment. Furthermore, the Jaccard's similarity coefficients of plant species between soil seed banks and aboveground vegetation at the seven geomorphic positions were low, suggesting that vegetation restoration or reestablishment processes should be promoted through adding seeds to surface layers.展开更多
Based on the information from forest resources distribution maps of Luoning County of 1983 and 1999, six indices were used to analyze spatial patterns and dynamics of forest landscapes of t...Based on the information from forest resources distribution maps of Luoning County of 1983 and 1999, six indices were used to analyze spatial patterns and dynamics of forest landscapes of the typical region in the middle of the Yihe-Luohe river basin. These indices include patch number, mean patch area, fragment index, patch extension index, etc. The results showed that: (1) There was a rapid increase in the number of patch and total area from 1983 to 1999 in the study area. The fragment degree became very high. (2) The area of all the forest patch types had witnessed great changes. The fractal degree of each forest patch type became big from 1983 to 1999. The mean extension index of Robinia pseudoacacia forest, non-forest, shrub forest, sparse forest, and Quercus species forest increased rapidly, but that of economic forest became zero. The fractal dimension each showed that forest coverage has been promoted. (3) The changes of landscape patterns were different in different geomorphic regions. From 1983 to 1999 the vegetation cover area, the gross number and the density of patch, diversity and evenness of landscape were all reduced greatly in gullies and ravines, but the maximum area and the mean area of patch types were increased. In hilly region, both the forest cover area and the number of patch increased from 1983 to 1999, but the mean area of patch was reduced greatly. In mountain region, even though the area under forest canopy reduced from 1983 to 1999, the patch number was increased greatly, the mean area of all patch types was reduced, the extension index, diversity index and evenness index of landscape were all increased. Furthermore, because of different types of land use, human activity and terrain, the vegetation changes on northern and southern mountain slopes were different. According to these analyses, the main driving forces, such as the policies of management, market economy, influence of human activities etc. are brought out.展开更多
Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geo...Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geomorphic and ecological zones, essential for reefs management in the context of global warming and ocean acidification, is not well documented. We analyzed data from field surveys, Landsat-8 and GF-1 images to map the distribution of hard coral within geomorphic zones and reef fiat ecological zones. In situ surveys conducted in June 2014 on nine reefs provided a complete picture of reef status with regard to live coral diversity, evenness of coral cover and reef health (live versus dead cover) for the Xisha Islands. Mean coral cover was 12.5% in 2014 and damaged reefs seemed to show signs of recovery. Coral cover in sheltered habitats such as lagoon patch reefs and biotic dense zones of reef flats was higher, but there were large regional differences and low diversity. In contrast, the more exposed reef slopes had high coral diversity, along with high and more equal distributions of coral cover. Mean hard coral cover of other zones was 〈10%. The total Xisha reef system was estimated to cover 1 060 km2, and the emergent reefs covered -787 km2. Hard corals of emergent reefs were considered to cover 97 km2. The biotic dense zone of the reef flat was a very common zone on all simple atolls, especially the broader northern reef flats. The total cover of live and dead coral can reach above 70% in this zone, showing an equilibrium between live and dead coral as opposed to coral and algae. This information regarding the spatial distribution of hard coral can support and inform the management of Xisha reef ecosystems.展开更多
Ganga river basins exposed to active erosional and deformational processes. The recurrence of landslides, floods, and seismic activities makes it more susceptible to deformational activities. The tectonic analysis usi...Ganga river basins exposed to active erosional and deformational processes. The recurrence of landslides, floods, and seismic activities makes it more susceptible to deformational activities. The tectonic analysis using geomorphic indices and morphometric parameters will help in determining the hazard-prone area of the river basin. Geomorphic indices and morphometric parameters are calculated to investigate the role of neotectonic activities, as it acts as a controlling factor in the development of landforms in the tectonically active terrains. Neotectonic activities influence the terrain topography, which significantly affects the drainage system and geomorphological setup of the area. In this study, the assessment of active tectonics of study area was determined using Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Global Digital Elevation Model(GDEM) based on Geomorphic Indices(Stream Length Gradient index, Hypsometric integral, Asymmetry factor, Basin shape, Valley floor width to Valley height ratio, Mountain front sinuosity index) cumulatively with Linear, Areal and Relief morphometric parameters on 27 delineated basins of the study area. The combined classification of Relative Tectonic Activity Index(Iat) and morphometric parameters of 27 basins categorized all the zones into four different classes:Class 1 – Very High(<1.97;410 km^2);Class 2 – High(1.97 – 2.05;275 km^2);Class 3 – Moderate(2.05 – 2.21;273 km^2),and Class 4 – Low(>2.21;299 km^2). The basins with tectonic activities have a consistent relationship with structural disturbances, basin geometry, and field studies. The tectonically active zonation of a part of Ganga basin using geomorphic indices and morphometric parameters suggest that it has significant influence of neotectonic activities in a part of Ganga basin.展开更多
The present study area,Dadra and Nagar Haveli,contains several lineaments and traces of active faults.The various aspect of the geomo rphic analysis,i.e.,stream length(SL) gradient,hypsometric integral(HI),basin shape...The present study area,Dadra and Nagar Haveli,contains several lineaments and traces of active faults.The various aspect of the geomo rphic analysis,i.e.,stream length(SL) gradient,hypsometric integral(HI),basin shape(BS),valley floor(VF),have been applied to evaluate the relative index of active tectonics(RIAT) of the Damanganga watershed.The high and low zones of tectonic activity have been identified based on the geomorphic analysis of the watershed.After evaluation of all indices,three classes,class IIhigh(1.3 ≤RIAT <1.5),class Ⅲ-moderate(1.5 ≤RIAT <1.8),and class Ⅳ-low(1.8 ≤RIAT),have been obtained to outline the degree/gradation of comparative tectonic activities in the study area.The appraised outcome of the RIAT dispersal is also well reinforced by the geomorphic evidence in the field.The collective outcomes of geomorphic evidence,such as stream deflection and analysis of lineament,deflection of streams,and geomorphic indices,conceal that the Damanganga watershed is affected by tectonic activity.展开更多
On 05 September 2022,an Ms 6.8(Mw 6.6)earthquake occurred in Luding County,Sichuan Province,China,with the epicenter at 29.59°N,102.08°E and a focal depth of approximately 16.0km.Combining field investigatio...On 05 September 2022,an Ms 6.8(Mw 6.6)earthquake occurred in Luding County,Sichuan Province,China,with the epicenter at 29.59°N,102.08°E and a focal depth of approximately 16.0km.Combining field investigations,high-resolution satellite images and multiple datatpes characterizing the seismogenic structure,topography and geology,this study attempts to discuss the influence of geomorphic and tectonic indexes on landslide distribution.The results show that the 2022 Luding earthquake with seismogenic fault at the Moxi fault,was a sinistral strike-slip event that triggered at least 4528landslides over an area of~2000 km2.These landslides span a total area of 28.1 km^(2),and the western section of the seismogenic fault,which serves as the active wall area,is characterized by a higher landslide concentration,especially in the Wandong Basin.The seismogenic fault and lithology influence the regional distribution of landslides,and more landslides occurred closer to the seismogenic fault and in the controlling lithologies of granite and dolomite.Local topography influences the landslide occurrence position on the slope;the eastern section is prone to form landslides in the lower gorge section,and the western section is prone to form landslides in the upper-top section of the gorge.For coseismic landslides in the eastern Baryan Har block,the eastern boundary(Longmenshan fault),where the earthquakes are characterized by thrusts with slight dextral strike-slip movement,could be the primary landslide-prone area;the southern boundary,the Moxi fault and the southern segment of the Xianshuihe fault,with more intensive strikeslip movement,may be the secondary landsideprone area;and the northern boundary is the tertiary landside-prone area.Additionally,the current landslide inventory may be underestimated although this underestimation has limited influence on the results.展开更多
We investigated how dustfall flux (DF) and dust particle size (DPS) were affected by geomorphic conditions, wind speed, and precipitation using data from 27 sites in northern China. The sites with the greatest DF and ...We investigated how dustfall flux (DF) and dust particle size (DPS) were affected by geomorphic conditions, wind speed, and precipitation using data from 27 sites in northern China. The sites with the greatest DF and greatest median diameter of dustfall (MDD) were primarily in desert regions and had extensive mobile sands. DF and MDD were lowest in agricultural regions, which had low levels of coarse particles because of human land use and high vegetation coverage that restrained blowing sand. DF values were higher and MDD values were lower in the western agricultural region than in the eastern agricultural region because the former is closer to desert regions and contains more fine dust that has traveled far. In regions with extensive desertified lands, DF values were lower than those in desert regions, and MDD values were greater than in agricultural regions, possibly due to coarsening of soil texture by desertification processes combined with higher vegetation coverage and soil moisture than in desert regions, thereby restraining blowing sand. Although high DF and MDD always coincided spatially with strong winds and low precipitation, the strong winds and low precipitation did not always mean high DF and MDD. High DF also coincided temporally with periods of low precipitation, but low precipitation did not always mean high DF. Thus, although the spatial trends in DF and DPS were controlled mostly by geomorphic conditions, and monthly trends in DF were controlled mainly by wind speed, weak wind and high precipitation can restrain the blowing sand at certain times and locations. Seasonal changes in DPS may be controlled simultaneously by geomorphic conditions, meteorological factors, and distance from source areas, not solely by the winter monsoon.展开更多
Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using fie...Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.展开更多
Landscapes in tectonically active Hindu Kush (NW Pakistan and NE Alghanistanl result from a complex integration of the effects of vertical and horizontal crustal block motions as well as erosion and deposition proces...Landscapes in tectonically active Hindu Kush (NW Pakistan and NE Alghanistanl result from a complex integration of the effects of vertical and horizontal crustal block motions as well as erosion and deposition processes. Active tectonics in this region have greatly influenced the drainage system and geomorphic expressions. The study area is a junction of three important mt^unlain ranges (Hindu Kush-Karakorunl-Himalayas) and is thus an ideal natural laboratory to investigate the relative tectonic activity resulting from the India-Eurasia collision. We evaluate active tectonics using DEM derived drainage network and geomorphic indices hypsometric integral (Hl). stream-length gradient (SL), fractal dimension (FD), basin asymmetry factor (AF), basin shape index (B,), valley floor width to wllley height ratio (Vf) and motmtain front sinuosity (Star). The results obtained from these indices were combined to yield an index of relative active tectonics (IRAT) using GIS. The average of the seven measured geomorphic indices was used to ewfluate the distri- bution of relative tectonic activity in the study area. We defined tour classes to define the degree of rela- tive tectonic activity: class 1 very high (1.0 ≤ IRAT 〈 1.3); class 2 high (1.3 ≥ IRAT 〈 1.5): class 3--moderate (1.5 〉 IRAT 〈 1.8); and class 4--low (1.8 〉 IRAT). In view of the results, we conclude that this combined approach allows the identification of the highly deformed areas related to active tectonics. Landsat imagery and field observations also evidence the presence of active tectonics based on the deflected streams, deformed landforms, active mountain fronts and triangular facets. The indicative values of IRAT are consistent with the areas of known relative uplift rates, landforms and geology.展开更多
In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis,...In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis, using the intelligent images made from high resolution DEM(Digital Elevation Model). This method is useful to extract the small ground displacement where the surface shape was not intensely deformed.展开更多
文摘Understanding the topography in active tectonic areas and assessing the rates and models of active deformation in the upper crust are primary objectives in tectonic geomorphology studies. The drainage pattern of river systems is highly sensitive to tectonically induced changes, and it often preserves the records of the formation and progression of most tectono-geomorphic processes within its boundaries. Therefore, the evolution of landforms is a consequence of the evolution of individual drainage basins in which they are formed. Assessing the rates of tectonic deformation using geomorphic data is a traditionally adopted method to characterize the nature of active faults. Globally, the Digital Elevation Model(DEM) is widely used as a crucial tool to analyze the morphotectonic features of drainage basins. In this study, some geomorphic indices were applied to investigate the impact of tectonism on landscape along the Karahay?t Fault and its associated drainage areas. These geomorphic indices are mountain front sinuosity(Smf values between 1.17-1.52), valley floor width-to-height ratio(Vf values between 0.25-1.46), basin asymmetry factor(AF values between 15-72), drainage basin shape(Bs values between 3.18-6.01), hypsometric integral and curve(HI values between 0.32-047), channel sinuosity(S values between 1-1.6), normalized steepness index(Ksn values between 1-390) and Chi integral(χ values between 200-4400). The development of drainage areas on the hanging wall and footwall block of the Karahayit Fault differs depending on the uplift. The drainage areas developed on the hanging wall present different patterns depending on the regional uplift caused by the fault. This reveals that the fault contributed significantly to the development of drainage areas and regional uplift in the region. In addition, the maximum earthquake magnitude that may occur in the future on the Karahayit Fault, whose activity is supported by geomorphic indices, is calculated as 6.23. Since an earthquake of this magnitude may cause loss of life and property in the region, precautions should be taken.
基金supported by the Key Research and Development Plan of Yunnan Province:The Technology of the Comprehensive Risk Assessment of the Earthquake Catastrophe and the Disaster Chains in Yunnan and Its Application(No.202203AC100003)Institute of Geology,China Earthquake Administration(No.IGCEA2302)。
文摘Quantitative geomorphic analyses are usually powerful in identifying active tectonics across global orogenic belts.Our present study will focus on the Anatolian Plate which hosts a lot of recent catastrophic earthquakes in Türkiye.Six geomorphic indices for 100 sub-basins around Türkiye have been computed including local relief,slope,normalized steepness index(k_(Sn)),hypsometric curve and integral(HI),transverse topographic symmetry factor(Tf),and the basin asymmetry factor(Af).The averaged kSnand Af values have shown four high-value anomalous zones,suggesting relatively high uplift rates featured by high river incision and regional tilting.The values of 0.35≤HI<0.6 for basins with S-shaped curves imply intensive tectonic activities along the eastern part of the North Anatolian Fault Zone(NAFZ),the Northeast Anatolian Fault Zone(NEAFZ),the East Anatolian Fault Zone(EAFZ),and the Central Anatolian Fault Zone(CAFZ).All results of the geomorphic indices analysis suggest a relatively high degree of tectonic activity in the following four areas,the Isparta Angle,the Eastern Black Sea Mountains,the South-eastern Anatolia Region,and the Central Anatolian fault zone.We further suggest that the eastern part of the NAFZ,NEAFZ,EAFZ,and CAFZ will be more active in tectonic activities,with a greater potential for strong earthquake occurrence.
文摘The Yaounde Group(YG),representing the southern edge of the North Equatorial PanAfrican Belt,consists of quartzites,schists,micaschists,amphibolites,gneisses and migmatites.Tectonism has formed a landscape characterized by the development of linear and folded valleys and ridges,fault scarps,V-shaped valleys,incised rivers and knickpoints.These landforms constitute important markers of the regional tectonic activity,which have been computed from spatial sources such as SRTM,DEM,hydrographical networks and geomorphic indices such as AF,T,Smf,Vf,Bs,Hi,U,SI and Li.The results highlighted a mature relief consisting of asymmetric basins generated by tilting and uplift phenomena.The relative index of active tectonics(RIAT)has been estimated from an average of eight geomorphic indices evaluated on 24 subbasins,in the study area.Four classes have been defined:class 1(1.38),very high active(1.0≤RIAT<1.5);class 2(1.50-1.88),high active(1.5≤RIAT<2.0);and class 3(2.00-2.13)moderate active(2.0≤RIAT<2.5).These three classes,respectively covering 10.20%(458 km2),80.10%(3595 km2)and 9.69%(435 km2)of the study area,have shown a highly active tectonic zone,and imply the existence of a neotectonic event in the YG.This tectonic unit(YG)was also affected by the dextral NW-SE strike-slip faulting,which cross-cut the Sanaga Shear Zone(SSZ)at Ebebda and the foliation oriented NW-SE.The tilting and uplift of rocks related to Moho ascending are responsible for crustal thinning in the Cameroon basement,more important to the Adamawa Plateau from the Cretaceous age and the reactivation of existing tectonic accidents.The presence of hills,fault scarps,reverse faults,knickpoints,V and U shaped valleys and rounded mountains testify to the interaction between tectonic uplift,lithology,climate,weathering and erosion.
文摘There are various faults in northern and southern margins of Torbat-e-Jam-Fariman plain which show the probability of enormous earthquake in the future.In present study the geomorphic indices contain Asymmetry Function(Af),Sinuosity of mountain front(Smf),Valley floor index(Vf),Hypsometric index(Hi),Mean Axial slope of channel index(MASC)and Drainage Basin Shape(Bs),have been utilized to determine the relative tectonic activity index(IAT)to recognize,eventually,the geo-structural model of the study area.Faults and folds control the geo-structural activities of the study area,and the geomorphic indices are being affected in consequence of their activities.The intensity of these activities is different throughout the plain.There are many geomorphic evidences,related to active transform fault which are detectable all over the study area such as deviated rivers,quaternary sediments transformation,fault traces.Therefore,recognition of geo-structural model of the study area is extremely vital.Field study,then,approved the results of geomorphic indices calculation in determining the geo-structural model of the study area.Results depicted that the geostructural model of the study area is a kind of Horsetail splay form which is in accordance to the relative tectonic activity of the study area.Based on the above mentioned results it can be predicted that the splays are the trail of Neyshabour fault.
文摘Torrential processes are among the main actors responsible for sediment production and mobility in mountain catchments.For this reason,the understanding of preferential pathways for sediment routing has become a priority in hazard assessment and mitigation.In this context,the sediment Connectivity Index(IC)enables to analyse the existing linkage between sediment sources and the selected target(channel network or catchment outlet).The IC is a grid-based index that allows fast computation of sediment connectivity based on landscape information derived from a single Digital Terrain Model(DTM).The index computation is based on the log-ratio between an upslope and a downslope component,including information about drainage area,slope,terrain roughness,and distance to the analysis target(e.g.outlet).The output is a map that highlights the degree of structural connectivity of sediment pathways over analysed catchments.Until now,these maps are however rarely used to help defining debris-flow hazard maps,notably due to a lack of guidelines to interpret the IC spatial distribution.This paper proposes an exploitation procedure along profiles to extract more information from the analysis of mapped IC values.The methodology relies on the analysis of the IC and its component variables along the main channel profile,integrated with information about sediment budgeting derived from Difference of DEMs(DoD).The study of connectivity was applied in the unmanaged sub-catchment(without torrent control works)of the Rio Soial(Autonomous Province of Trento–NE Italy)to understanding the geomorphic evolution of the area after five debris flows(in ten years)and the related changes of sediment connectivity.Using a recent DTM as validation,we demonstrated how an IC analysis over the older DTM can help predicting geomorphic changes and associated hazards.The results show an IC aptitude to capture geomorphic trajectories,anticipate debris flow deposits in a specific channel location,and depict preferential routing pathways.
文摘The foothill belts of Tianshan Mountains are about 280 km long and 60 km wide, and the study area extends from Kuitun city to Fukang city. They are transitional belts between mountains and plains, appearing in three rows of folds with different morphologies and their age becoming younger from south to north. Based on GIS and RS methods, and materials of the previous researchers, this paper deals with the genetics of the foothill belts and their landscape features resulting from folding by neotectonic movements, and also describes their length, width and slope by remote sensing image interpretation. The characteristics of the foothill belts are found to be very important for the surrounding environment by preventing groundwater from flowing into plains, changing groundwater, increasing flow of surface runoff, in addition to their roles in protecting the surrounding environment. The purpose of this paper is to provide an in-depth understanding of the foothill belts and influence on its surrounding environment.
文摘Although anastomosing fluvial rivers are given much attention recently by some research workers because the result channel sandstone of which is one typical primary reservoirs of petroleum and natural gas, of which the flood plains and the interchannel wetlands are pay zones where coals had formed, the comprehension of anastomosing river is some extent limited at present. Some researchers regard that the anastomosing river river and the anabranched river are the same kind of rivers. In this paper, the sedimentary, geomorphic and hydraulic characteristics and the main controlling factors of anastomosing fluvial system are summarized systematically. Some of the characteristics are compared with others fluvial rivers. Humid climate is suitable to form anastomosing channel systems, in arid semiarid regions anastomosing river maybe develop if many befitting factors combine together. The authors of the paper think that anastomosing river is one typical channel pattern and is dissimilar to anabranched channel pattern.
基金financially supported by the National Key Research and Development Program of China (2016YFA0601601)the National Science and Technology Support Program (2013BAB06B03)+2 种基金the National Natural Science Foundation of China (41472155)Candidates of the Young and MiddleAged Academic Leaders of Yunnan Province (2014HB005)Program for Excellent Young Talents of Yunnan University
文摘Buyuan River, the largest tributary within the Chinese Lancang-Mekong River region downstream of the Jinghong Dam, plays a crucial role in river function and ecosystem service of the Lancang-Mekong River. The geomorphic evolution of a basin exerts a key control on riverine sediment input and transport. In this study, the geomorphic characteristics of Buyuan Basin are analyzed using morphological parameters, hydrodynamic parameters and the stream power river incision model. The results show that: 1) The slight north-south difference of channel density is most likely due to lithology and independent of tectonic activity and climate. 2) The weak tectonic activity and the low hypsometric integral(HI) value suggest that the macroscopic landform condition limits erosion and sediment production. 3) The logarithmic longitudinal profile of the main channel defends that the upstream sediments generated by erosion are easily deposited in the downstream channel, rather than being transported directly into the Lancang-Mekong River. 4) Approximately 74% of the reaches have annual average stream power less than 500 W·m^(-1). The narrow variation ranges of stream power in 50% of the river channel indicate relatively stable hydrodynamic environment. 5) Stream erosion and tectonic activity make the longitudinal profiles of the main channel and most tributary channels unstable. The wide range(between 22.01 and 45.58 with θ=0.43) of steepness index(k_(sn)) of longitudinal profiles implies differential uplift in the basin.
基金financially supported by the National Natural Science Foundation of China(41571256)the National Natural Science Foundation of China–Xinjiang Mutual Funds(U1503101)the Natural Science Foundation of Xinjiang,China(2015211C292)
文摘Understanding the characteristics of soil seed banks in sand dunes is crucial to stabilize the dune systems and maintain the plant populations in deserts. In this study, we conducted a survey investigation in the field and a seed germination experiment in the laboratory to explore the characteristics of soil seed banks at various geomorphic positions of longitudinal sand dunes in the Gurbantunggut Desert, China. Totally, 17 plant species belonging to 17 genera and 9 families were identified in soil seed banks, and 35 plant species belonging to 34 genera and 17 families were identified in aboveground vegetation. Plant species richness in soil seed banks decreased with increasing soil depth. The highest species richness was presented in the upper slope of the windward slope and the lowest species richness was presented in the base of the windward slope. There was no significant difference in seed density of soil seed banks among the examined seven geomorphic positions. The highest seed density occurred in the lower slope of the leeward slope while the lowest occurred in the crest. Moreover, seed density decreased with increasing soil depth, being the highest in the upper soil layer (0-2 cm). For both soil seed banks and aboveground vegetation, there was no significant difference in Simpson's diversity index among the seven geomorphic positions; however, Shannon-Wiener diversity index and Pielou's evenness index showed significant differences among the seven geomorphic positions. Those results showed that although there was no significant difference in seed density of soil seed banks among the seven geomorphic positions, the geomorphic positions significantly affected the species richness, diversity and distribution of soil seed banks. Therefore, understanding the characteristics of soil seed banks at different geomorphic positions of sand dunes is essential to vegetation restoration or reestablishment. Furthermore, the Jaccard's similarity coefficients of plant species between soil seed banks and aboveground vegetation at the seven geomorphic positions were low, suggesting that vegetation restoration or reestablishment processes should be promoted through adding seeds to surface layers.
基金Prominent Youth Science Foundation of Henan Province No.0003+2 种基金 No.9920 Natural Science Foundation of Henan Province No. 0111070100
文摘Based on the information from forest resources distribution maps of Luoning County of 1983 and 1999, six indices were used to analyze spatial patterns and dynamics of forest landscapes of the typical region in the middle of the Yihe-Luohe river basin. These indices include patch number, mean patch area, fragment index, patch extension index, etc. The results showed that: (1) There was a rapid increase in the number of patch and total area from 1983 to 1999 in the study area. The fragment degree became very high. (2) The area of all the forest patch types had witnessed great changes. The fractal degree of each forest patch type became big from 1983 to 1999. The mean extension index of Robinia pseudoacacia forest, non-forest, shrub forest, sparse forest, and Quercus species forest increased rapidly, but that of economic forest became zero. The fractal dimension each showed that forest coverage has been promoted. (3) The changes of landscape patterns were different in different geomorphic regions. From 1983 to 1999 the vegetation cover area, the gross number and the density of patch, diversity and evenness of landscape were all reduced greatly in gullies and ravines, but the maximum area and the mean area of patch types were increased. In hilly region, both the forest cover area and the number of patch increased from 1983 to 1999, but the mean area of patch was reduced greatly. In mountain region, even though the area under forest canopy reduced from 1983 to 1999, the patch number was increased greatly, the mean area of all patch types was reduced, the extension index, diversity index and evenness index of landscape were all increased. Furthermore, because of different types of land use, human activity and terrain, the vegetation changes on northern and southern mountain slopes were different. According to these analyses, the main driving forces, such as the policies of management, market economy, influence of human activities etc. are brought out.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA12A406)the National Natural Science Foundation of China(No.41271409)the National Science and Technology Major Project(No.00-Y30B15-9001-14/16-5)
文摘Coral reefs in the Xisha Islands (also known as the Paracel Islands in English), South China Sea, have experienced dramatic declines in coral cover. However, the current regional scale hard coral distribution of geomorphic and ecological zones, essential for reefs management in the context of global warming and ocean acidification, is not well documented. We analyzed data from field surveys, Landsat-8 and GF-1 images to map the distribution of hard coral within geomorphic zones and reef fiat ecological zones. In situ surveys conducted in June 2014 on nine reefs provided a complete picture of reef status with regard to live coral diversity, evenness of coral cover and reef health (live versus dead cover) for the Xisha Islands. Mean coral cover was 12.5% in 2014 and damaged reefs seemed to show signs of recovery. Coral cover in sheltered habitats such as lagoon patch reefs and biotic dense zones of reef flats was higher, but there were large regional differences and low diversity. In contrast, the more exposed reef slopes had high coral diversity, along with high and more equal distributions of coral cover. Mean hard coral cover of other zones was 〈10%. The total Xisha reef system was estimated to cover 1 060 km2, and the emergent reefs covered -787 km2. Hard corals of emergent reefs were considered to cover 97 km2. The biotic dense zone of the reef flat was a very common zone on all simple atolls, especially the broader northern reef flats. The total cover of live and dead coral can reach above 70% in this zone, showing an equilibrium between live and dead coral as opposed to coral and algae. This information regarding the spatial distribution of hard coral can support and inform the management of Xisha reef ecosystems.
文摘Ganga river basins exposed to active erosional and deformational processes. The recurrence of landslides, floods, and seismic activities makes it more susceptible to deformational activities. The tectonic analysis using geomorphic indices and morphometric parameters will help in determining the hazard-prone area of the river basin. Geomorphic indices and morphometric parameters are calculated to investigate the role of neotectonic activities, as it acts as a controlling factor in the development of landforms in the tectonically active terrains. Neotectonic activities influence the terrain topography, which significantly affects the drainage system and geomorphological setup of the area. In this study, the assessment of active tectonics of study area was determined using Advanced Spaceborne Thermal Emission and Reflection Radiometer(ASTER) Global Digital Elevation Model(GDEM) based on Geomorphic Indices(Stream Length Gradient index, Hypsometric integral, Asymmetry factor, Basin shape, Valley floor width to Valley height ratio, Mountain front sinuosity index) cumulatively with Linear, Areal and Relief morphometric parameters on 27 delineated basins of the study area. The combined classification of Relative Tectonic Activity Index(Iat) and morphometric parameters of 27 basins categorized all the zones into four different classes:Class 1 – Very High(<1.97;410 km^2);Class 2 – High(1.97 – 2.05;275 km^2);Class 3 – Moderate(2.05 – 2.21;273 km^2),and Class 4 – Low(>2.21;299 km^2). The basins with tectonic activities have a consistent relationship with structural disturbances, basin geometry, and field studies. The tectonically active zonation of a part of Ganga basin using geomorphic indices and morphometric parameters suggest that it has significant influence of neotectonic activities in a part of Ganga basin.
基金DG ISR and DST (GoG) for providing required supportDMC Dadra and Nagar Haveli (DNH/1255) for providing financial support。
文摘The present study area,Dadra and Nagar Haveli,contains several lineaments and traces of active faults.The various aspect of the geomo rphic analysis,i.e.,stream length(SL) gradient,hypsometric integral(HI),basin shape(BS),valley floor(VF),have been applied to evaluate the relative index of active tectonics(RIAT) of the Damanganga watershed.The high and low zones of tectonic activity have been identified based on the geomorphic analysis of the watershed.After evaluation of all indices,three classes,class IIhigh(1.3 ≤RIAT <1.5),class Ⅲ-moderate(1.5 ≤RIAT <1.8),and class Ⅳ-low(1.8 ≤RIAT),have been obtained to outline the degree/gradation of comparative tectonic activities in the study area.The appraised outcome of the RIAT dispersal is also well reinforced by the geomorphic evidence in the field.The collective outcomes of geomorphic evidence,such as stream deflection and analysis of lineament,deflection of streams,and geomorphic indices,conceal that the Damanganga watershed is affected by tectonic activity.
基金supported by National Natural Science Foundation of China(Grant No.U22A20603,U21A2008,42007273)the Special Assistant Researcher Foundation of Chinese Academy of Sciences(Zhao Bo)+1 种基金the China Postdoctoral Science Foundation(2020M673292,and 2021T140650)the IMHE Youth S&T Foundation(SDS-QN-2106)。
文摘On 05 September 2022,an Ms 6.8(Mw 6.6)earthquake occurred in Luding County,Sichuan Province,China,with the epicenter at 29.59°N,102.08°E and a focal depth of approximately 16.0km.Combining field investigations,high-resolution satellite images and multiple datatpes characterizing the seismogenic structure,topography and geology,this study attempts to discuss the influence of geomorphic and tectonic indexes on landslide distribution.The results show that the 2022 Luding earthquake with seismogenic fault at the Moxi fault,was a sinistral strike-slip event that triggered at least 4528landslides over an area of~2000 km2.These landslides span a total area of 28.1 km^(2),and the western section of the seismogenic fault,which serves as the active wall area,is characterized by a higher landslide concentration,especially in the Wandong Basin.The seismogenic fault and lithology influence the regional distribution of landslides,and more landslides occurred closer to the seismogenic fault and in the controlling lithologies of granite and dolomite.Local topography influences the landslide occurrence position on the slope;the eastern section is prone to form landslides in the lower gorge section,and the western section is prone to form landslides in the upper-top section of the gorge.For coseismic landslides in the eastern Baryan Har block,the eastern boundary(Longmenshan fault),where the earthquakes are characterized by thrusts with slight dextral strike-slip movement,could be the primary landslide-prone area;the southern boundary,the Moxi fault and the southern segment of the Xianshuihe fault,with more intensive strikeslip movement,may be the secondary landsideprone area;and the northern boundary is the tertiary landside-prone area.Additionally,the current landslide inventory may be underestimated although this underestimation has limited influence on the results.
基金the funding from the Natural Science Foundation of China through Grant No. 40638038 and 2010011044-1
文摘We investigated how dustfall flux (DF) and dust particle size (DPS) were affected by geomorphic conditions, wind speed, and precipitation using data from 27 sites in northern China. The sites with the greatest DF and greatest median diameter of dustfall (MDD) were primarily in desert regions and had extensive mobile sands. DF and MDD were lowest in agricultural regions, which had low levels of coarse particles because of human land use and high vegetation coverage that restrained blowing sand. DF values were higher and MDD values were lower in the western agricultural region than in the eastern agricultural region because the former is closer to desert regions and contains more fine dust that has traveled far. In regions with extensive desertified lands, DF values were lower than those in desert regions, and MDD values were greater than in agricultural regions, possibly due to coarsening of soil texture by desertification processes combined with higher vegetation coverage and soil moisture than in desert regions, thereby restraining blowing sand. Although high DF and MDD always coincided spatially with strong winds and low precipitation, the strong winds and low precipitation did not always mean high DF and MDD. High DF also coincided temporally with periods of low precipitation, but low precipitation did not always mean high DF. Thus, although the spatial trends in DF and DPS were controlled mostly by geomorphic conditions, and monthly trends in DF were controlled mainly by wind speed, weak wind and high precipitation can restrain the blowing sand at certain times and locations. Seasonal changes in DPS may be controlled simultaneously by geomorphic conditions, meteorological factors, and distance from source areas, not solely by the winter monsoon.
基金financially supported by the National Nature Science Foundation of China under Grant No.41372333,41172158China Geological Survey(grant No.1212011220123)
文摘Several argillaceous platforms lie along the Yellow River(YR) of the eastern Guide Basin, northeastern Tibetan Plateau, and their compositions, formation processes, and geomorphic evolution remain debated. Using field survey data, sample testing, and high-resolution remote sensing images, the evolution of the Erlian mudflow fans are analyzed. The data show significant differences between fans on either side of the YR. On the right bank, fans are dilute debris flows consisting of sand and gravel. On the left bank, fans are viscosity mudflows consisting of red clay. The composition and formation processes of the left bank platforms indicate a rainfall-induced pluvial landscape. Fan evolution can be divided into two stages: early-stage fans pre-date 16 ka B.P., and formed during the last deglaciation; late-stage fans post-date 8 ka B.P.. Both stages were induced by climate change. The data indicate that during the Last Glacial Maximum, the northeastern Tibetan Plateau experienced a cold and humid climate characterized by high rainfall. From 16–8 ka, the YR cut through the Erlian early mudflow fan, resulting in extensive erosion. Since 8 ka, the river channel has migrated south by at least 1.25 km, and late stage mudflow fan formation has occurred.
基金Financial support to Syed Amer Mahmood from University of the Punjab,Lahore Government of Pakistan Remote Sensing GroupTU Freiberg,Germanypartial support from German Academic Exchange Association(DAAD)International Association of Mathematical Geosciences(IAMG)
文摘Landscapes in tectonically active Hindu Kush (NW Pakistan and NE Alghanistanl result from a complex integration of the effects of vertical and horizontal crustal block motions as well as erosion and deposition processes. Active tectonics in this region have greatly influenced the drainage system and geomorphic expressions. The study area is a junction of three important mt^unlain ranges (Hindu Kush-Karakorunl-Himalayas) and is thus an ideal natural laboratory to investigate the relative tectonic activity resulting from the India-Eurasia collision. We evaluate active tectonics using DEM derived drainage network and geomorphic indices hypsometric integral (Hl). stream-length gradient (SL), fractal dimension (FD), basin asymmetry factor (AF), basin shape index (B,), valley floor width to wllley height ratio (Vf) and motmtain front sinuosity (Star). The results obtained from these indices were combined to yield an index of relative active tectonics (IRAT) using GIS. The average of the seven measured geomorphic indices was used to ewfluate the distri- bution of relative tectonic activity in the study area. We defined tour classes to define the degree of rela- tive tectonic activity: class 1 very high (1.0 ≤ IRAT 〈 1.3); class 2 high (1.3 ≥ IRAT 〈 1.5): class 3--moderate (1.5 〉 IRAT 〈 1.8); and class 4--low (1.8 〉 IRAT). In view of the results, we conclude that this combined approach allows the identification of the highly deformed areas related to active tectonics. Landsat imagery and field observations also evidence the presence of active tectonics based on the deflected streams, deformed landforms, active mountain fronts and triangular facets. The indicative values of IRAT are consistent with the areas of known relative uplift rates, landforms and geology.
文摘In this study, a new method for quantitative and efficient measurement for the ground surface movement was developed. The feature of this technique is to identify geomorphic characteristics by image matching analysis, using the intelligent images made from high resolution DEM(Digital Elevation Model). This method is useful to extract the small ground displacement where the surface shape was not intensely deformed.