Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD em...Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD employs various research approaches including in-situ observations,satellite measurements,numerical simulations,theoretical analysis,artificial intelligence,and physical model experiments in laboratory.Among these approaches,rotating tank experiments provide a valuable tool for simulating naturally-occurring fluid motions in laboratories.With proportional scaling and proper techniques,scientists can reproduce multi-scale physical processes of stratified fluids in the rotation system,which allows for the simulation of essential characteristics of fluid motions in the atmosphere and oceans.In this review,rotating tanks of various scales in the world are introduced,as these tanks have been actively used to explore fundamental scientific questions in ocean and atmosphere dynamics.To illustrate the GFD experiments,three representative cases are presented to demonstrate the frontier achievements in the the GFD study by using rotating tank experiments:mesoscale eddies in the ocean,convection processes,and plume dynamics.Detailed references for the experimental procedures are provided.Future studies are encouraged to further explore the utilization of rotating tanks with improvements in experimental design and integration of other research methods.This is a promising direction of GFD to help enhance our understanding of the complex nature of fluid motions in the natural world and to address the challenges posed by global environmental changes.展开更多
The State Key Laboratory of Numerical Modelling for Atmospheric Science and Geophysical Fluid Dynamics (LASG) was established in 1985. It was considered an Excellent Opening Laboratory in the national assessment organ...The State Key Laboratory of Numerical Modelling for Atmospheric Science and Geophysical Fluid Dynamics (LASG) was established in 1985. It was considered an Excellent Opening Laboratory in the national assessment organized by the former State Science and Technology Committee (now the Ministry of Science and Technology) in 1988. Because of this, LASG was upgraded to a State Key Laboratory in 1989. It won the honor of "Excellent展开更多
The State Key Laboratory of Numerical Modeling for Atmospheric Science and Geophysical Fluid Dynamics (LASG) was set up as early as in 1985. It has been appraised as an Excellent State Key Lab in each of the three nat...The State Key Laboratory of Numerical Modeling for Atmospheric Science and Geophysical Fluid Dynamics (LASG) was set up as early as in 1985. It has been appraised as an Excellent State Key Lab in each of the three national assessments organized by State Economic Planning Commission, National Natural Science Foundation (NSFC) and the Ministry of Science and Technology (MOST) in 1991, 1996 and 2000, respectively.展开更多
Hypergravity can be realized by creating a field imposed by centripetal acceleration in a centrifuge apparatus.Such an apparatus is often used to test soil response in geotechnical engineering problems.Here we present...Hypergravity can be realized by creating a field imposed by centripetal acceleration in a centrifuge apparatus.Such an apparatus is often used to test soil response in geotechnical engineering problems.Here we present the potential usage of a centrifuge apparatus to study various topics in hydrodynamics.The scaling law associated with hydrodynamics is first reviewed,and the advantage of controlling the body force is described.One of the perceived disadvantages in such experiments is the unwanted presence of the Coriolis effect in the centrifuge.However,we propose exploiting this effect to our advantage to study geophysical fluid-dynamic problems that occur particularly in the equatorial region.展开更多
In this article,we address both recent advances and open questions in some mathematical and computational issues in geophysical fluid dynamics(GFD)and climate dynamics.The main focus is on 1)the primitive equations(PE...In this article,we address both recent advances and open questions in some mathematical and computational issues in geophysical fluid dynamics(GFD)and climate dynamics.The main focus is on 1)the primitive equations(PEs)models and their related mathematical and computational issues,2)climate variability,predictability and successive bifurcation,and 3)a new dynamical systems theory and its applications to GFD and climate dynamics.展开更多
基金Supported by the National Key Research and Development Program of China(Nos.2017YFA0604100,2016YFC1402004,2017YFC1404200)the Program for Innovation Research and Entrepreneurship Team in Jiangsu Provincethe National Natural Science Foundation of China(Nos.41476022,41490643)。
文摘Geophysical fluid dynamics(GFD)is an interdisciplinary field that studies the large-scale motion of fluids in the natural world.With a wide range of applications such as weather forecasts and climate prediction,GFD employs various research approaches including in-situ observations,satellite measurements,numerical simulations,theoretical analysis,artificial intelligence,and physical model experiments in laboratory.Among these approaches,rotating tank experiments provide a valuable tool for simulating naturally-occurring fluid motions in laboratories.With proportional scaling and proper techniques,scientists can reproduce multi-scale physical processes of stratified fluids in the rotation system,which allows for the simulation of essential characteristics of fluid motions in the atmosphere and oceans.In this review,rotating tanks of various scales in the world are introduced,as these tanks have been actively used to explore fundamental scientific questions in ocean and atmosphere dynamics.To illustrate the GFD experiments,three representative cases are presented to demonstrate the frontier achievements in the the GFD study by using rotating tank experiments:mesoscale eddies in the ocean,convection processes,and plume dynamics.Detailed references for the experimental procedures are provided.Future studies are encouraged to further explore the utilization of rotating tanks with improvements in experimental design and integration of other research methods.This is a promising direction of GFD to help enhance our understanding of the complex nature of fluid motions in the natural world and to address the challenges posed by global environmental changes.
文摘The State Key Laboratory of Numerical Modelling for Atmospheric Science and Geophysical Fluid Dynamics (LASG) was established in 1985. It was considered an Excellent Opening Laboratory in the national assessment organized by the former State Science and Technology Committee (now the Ministry of Science and Technology) in 1988. Because of this, LASG was upgraded to a State Key Laboratory in 1989. It won the honor of "Excellent
文摘The State Key Laboratory of Numerical Modeling for Atmospheric Science and Geophysical Fluid Dynamics (LASG) was set up as early as in 1985. It has been appraised as an Excellent State Key Lab in each of the three national assessments organized by State Economic Planning Commission, National Natural Science Foundation (NSFC) and the Ministry of Science and Technology (MOST) in 1991, 1996 and 2000, respectively.
基金supported by the US National Science Foundation(Grant No.CMMI-1538211)。
文摘Hypergravity can be realized by creating a field imposed by centripetal acceleration in a centrifuge apparatus.Such an apparatus is often used to test soil response in geotechnical engineering problems.Here we present the potential usage of a centrifuge apparatus to study various topics in hydrodynamics.The scaling law associated with hydrodynamics is first reviewed,and the advantage of controlling the body force is described.One of the perceived disadvantages in such experiments is the unwanted presence of the Coriolis effect in the centrifuge.However,we propose exploiting this effect to our advantage to study geophysical fluid-dynamic problems that occur particularly in the equatorial region.
基金the grants from the Office of Naval Research,from the National Science Foundation,and from the National Nature Science Foundation of China(40325013,40675046)。
文摘In this article,we address both recent advances and open questions in some mathematical and computational issues in geophysical fluid dynamics(GFD)and climate dynamics.The main focus is on 1)the primitive equations(PEs)models and their related mathematical and computational issues,2)climate variability,predictability and successive bifurcation,and 3)a new dynamical systems theory and its applications to GFD and climate dynamics.