Two aspects of studies were carried out: 1) synthesis of geopolymer by using fly ash and metakaolin; 2) Immobilization behaviors of fly ash based geopolymer in a presence of Pb and Cu ions. As for the synthesis of ...Two aspects of studies were carried out: 1) synthesis of geopolymer by using fly ash and metakaolin; 2) Immobilization behaviors of fly ash based geopolymer in a presence of Pb and Cu ions. As for the synthesis of fly ash based geopolymer, 4 different fly ash content (10%, 30%, 50%, 70%) and 3 types of curing regimes (standard curing, steam curing and autoclave curing) were investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The experimental results show that geopolymer, containing 30% fly ash and synthesized at steam curing (80 ℃ for 8 h), exhibits higher mechanical strengths. The compressive and flexural strengths of fly ash based geopolymer reach 32.2 MPa and 7.15 MPa, respectively. Additionally, Infrared (IR) and X-ray diffraction (XRD) techniques were used to characterize the microstructure of the fly ash geopolymer. IR spectra shows that the absorptive band at 1086 cm^-1 shifts to lower wave number around 1033 cm^-1, and the 6-coordinated Al transforms into 4-coordination during the syn-thesis of fly ash based geopolymer. The resulting geopolymeric products were X-ray amorphous materials. As for immobilization of heavy metals, the leaching tests were employed to investigate the immobilization behaviors of the fly ash based geopolymer synthesized under the above optimum condition. The leaching tests showed that fly ash based geopolymer can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reached 90% greater when heavy metals were incorporated in the fly ash geopolymer in the range of 0.1% to 0.3%. The Pb exhibits better immobilization efficiency than the Cu, especially in the case of large dosages of heavy metals.展开更多
The present research explored the application of geopolymerization for the immobilization and solidification of heavy metal added into metakaolinte. The compressive strength of geopolymers was controlled by the dosage...The present research explored the application of geopolymerization for the immobilization and solidification of heavy metal added into metakaolinte. The compressive strength of geopolymers was controlled by the dosage of heavy metal cations, and geopolymers have a toleration limit for heavy metals. The influence of alkaline activator dosage and type on the heavy metal ion immobilization efficiency of metakaolinte-based geopolymer was investigated. A geopolymer with the highest heavy metal immobilization efficiency was identified to occur at an intermediate Na2SiO3 dosage and the metal immobilization efficiency showed an orderly increase with the increasing Na^+ dosage. Geopolymers with and without heavy metals were analyzed by the X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. No crystalline phase containing heavy metals was detected in geopolymers with heavy metal, suggesting that the crystalline phase containing heavy metals is not produced or most of the phases incorporating heavy metals are amorphous. FTIR spectroscopy showed that, with increasing heavy metal addition, an increase in NO3- peak intensity was observed, which was accompanied by a decrease in the CO3^2- peak.展开更多
Geopolymer is a material with high early strength.However,the insufficient durability properties,such as long-term strength,acid-base resistance,freeze-thaw resistance,leaching toxicity,thermal stability,sulfate resis...Geopolymer is a material with high early strength.However,the insufficient durability properties,such as long-term strength,acid-base resistance,freeze-thaw resistance,leaching toxicity,thermal stability,sulfate resistance and carbonation resistance,restrain its practical application.Herein,a longterm stable geopolymer composite with high final strength(ASK1)was synthesized from shell coal gasification fly ash(SFA)and steel slag(SS).Additionally,a geopolymer composite with high early strength(ASK2)was also synthesized for comparison.The results showed that ASK1 exhibited better performance on freezing-thawing resistance,carbonization resistance and heavy metals stabilization compared to the ASK2 at long-term curing.Raising the curing temperature could accelerate the unconfined compressive strength(UCS)development at initial curing ages of 3 to 7 d.Both ASK1 and ASK2 exhibited excellent acid-base and sulfate corrosion resistance.An increase for UCS was seen under KOH solution and MgSO_(4)solution corrosion for ASK1.All leaching concentrations of heavy metals out of the two geopolymers were below the standard threshold,even after 50 freezingthawing cycles.Both ASK1 and ASK2 geopolymer concrete exhibited higher sustainability and economic efficiency than Portland cement concrete.The result of this study not only provides a suitable way for the utilization of industrial solid waste in civil and environmental engineering,but also opens a new approach to improve the long-term stabilities of the geopolymers.展开更多
基金Funded by the Natural Science Foundation of China (No. 50702014)Outstanding young teacher’s teaching and researching plan from Southeast UniversityOpening Project of Key Laboratory for Advanced Civil Engineering Materials from Tongjin University
文摘Two aspects of studies were carried out: 1) synthesis of geopolymer by using fly ash and metakaolin; 2) Immobilization behaviors of fly ash based geopolymer in a presence of Pb and Cu ions. As for the synthesis of fly ash based geopolymer, 4 different fly ash content (10%, 30%, 50%, 70%) and 3 types of curing regimes (standard curing, steam curing and autoclave curing) were investigated to obtain the optimum synthesis condition based on the compressive and flexural strength. The experimental results show that geopolymer, containing 30% fly ash and synthesized at steam curing (80 ℃ for 8 h), exhibits higher mechanical strengths. The compressive and flexural strengths of fly ash based geopolymer reach 32.2 MPa and 7.15 MPa, respectively. Additionally, Infrared (IR) and X-ray diffraction (XRD) techniques were used to characterize the microstructure of the fly ash geopolymer. IR spectra shows that the absorptive band at 1086 cm^-1 shifts to lower wave number around 1033 cm^-1, and the 6-coordinated Al transforms into 4-coordination during the syn-thesis of fly ash based geopolymer. The resulting geopolymeric products were X-ray amorphous materials. As for immobilization of heavy metals, the leaching tests were employed to investigate the immobilization behaviors of the fly ash based geopolymer synthesized under the above optimum condition. The leaching tests showed that fly ash based geopolymer can effectively immobilize Cu and Pb heavy metal ions, and the immobilization efficiency reached 90% greater when heavy metals were incorporated in the fly ash geopolymer in the range of 0.1% to 0.3%. The Pb exhibits better immobilization efficiency than the Cu, especially in the case of large dosages of heavy metals.
文摘The present research explored the application of geopolymerization for the immobilization and solidification of heavy metal added into metakaolinte. The compressive strength of geopolymers was controlled by the dosage of heavy metal cations, and geopolymers have a toleration limit for heavy metals. The influence of alkaline activator dosage and type on the heavy metal ion immobilization efficiency of metakaolinte-based geopolymer was investigated. A geopolymer with the highest heavy metal immobilization efficiency was identified to occur at an intermediate Na2SiO3 dosage and the metal immobilization efficiency showed an orderly increase with the increasing Na^+ dosage. Geopolymers with and without heavy metals were analyzed by the X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. No crystalline phase containing heavy metals was detected in geopolymers with heavy metal, suggesting that the crystalline phase containing heavy metals is not produced or most of the phases incorporating heavy metals are amorphous. FTIR spectroscopy showed that, with increasing heavy metal addition, an increase in NO3- peak intensity was observed, which was accompanied by a decrease in the CO3^2- peak.
基金funded by the Jiangxi Academy of Water Science and Engineering Open Project Fund(No.2021SKSG04)the National Natural Science Foundation of China(No.51979011)+1 种基金the Central Non-Profit Scientific Research Fund for Institutes(Nos.CKSF2021483/CL,CKSF2023359/HL,and CKSF2023397/HL)the Knowledge Innovation Program of Science and Technology Bureau of Wuhan,China(No.CKSD2022360/CL)。
文摘Geopolymer is a material with high early strength.However,the insufficient durability properties,such as long-term strength,acid-base resistance,freeze-thaw resistance,leaching toxicity,thermal stability,sulfate resistance and carbonation resistance,restrain its practical application.Herein,a longterm stable geopolymer composite with high final strength(ASK1)was synthesized from shell coal gasification fly ash(SFA)and steel slag(SS).Additionally,a geopolymer composite with high early strength(ASK2)was also synthesized for comparison.The results showed that ASK1 exhibited better performance on freezing-thawing resistance,carbonization resistance and heavy metals stabilization compared to the ASK2 at long-term curing.Raising the curing temperature could accelerate the unconfined compressive strength(UCS)development at initial curing ages of 3 to 7 d.Both ASK1 and ASK2 exhibited excellent acid-base and sulfate corrosion resistance.An increase for UCS was seen under KOH solution and MgSO_(4)solution corrosion for ASK1.All leaching concentrations of heavy metals out of the two geopolymers were below the standard threshold,even after 50 freezingthawing cycles.Both ASK1 and ASK2 geopolymer concrete exhibited higher sustainability and economic efficiency than Portland cement concrete.The result of this study not only provides a suitable way for the utilization of industrial solid waste in civil and environmental engineering,but also opens a new approach to improve the long-term stabilities of the geopolymers.