期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Vertical structure of predictability and information transport over the Northern Hemisphere
1
作者 冯爱霞 王启光 +1 位作者 龚志强 封国林 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第2期661-668,共8页
Based on nonlinear prediction and information theory, vertical heterogeneity of predictability and information loss rate in geopotential height field are obtained over the Northern Hemisphere. On a seasonal-to-interan... Based on nonlinear prediction and information theory, vertical heterogeneity of predictability and information loss rate in geopotential height field are obtained over the Northern Hemisphere. On a seasonal-to-interannual time scale, the predictability is low in the lower troposphere and high in the mid-upper troposphere. However, within mid-upper troposphere over the subtropics ocean area, there is a relatively poor predictability. These conclusions also fit the seasonal time scale. Moving to the interannual time scale, the predictability becomes high in the lower troposphere and low in the mid-upper troposphere, contrary to the former case. On the whole the interannual trend is more predictable than the seasonal trend. The average information loss rate is low over the mid-east Pacific, west of North America, Atlantic and Eurasia, and the atmosphere over other places has a relatively high information loss rate on all-time scales. Two channels are found steadily over the Pacific Ocean and Atlantic Ocean in subtropics. There are also unstable channels. The four- season influence on predictability and information communication are studied. The predictability is low, no matter which season data are removed and each season plays an important role in the existence of the channels, except for the winter. The predictability and teleconnections are paramount issues in atmospheric science, and the teleconnections may be established by communication channels. So, this work is interesting since it reveals the vertical structure of predictability distribution, channel locations, and the contributions of different time scales to them and their variations under different seasons. 展开更多
关键词 geopotential height field information theory information loss rate PREDICTABILITY
下载PDF
Analysis of Stationary-Wave Nonstationarity in the Northern Hemisphere 500-hPa Height Field
2
作者 周国华 王盘兴 +2 位作者 施宁 李巧萍 佘高杰 《Acta meteorologica Sinica》 SCIE 2010年第3期287-296,共10页
In this paper,the concept of stationary-wave nonstationarity is presented and elucidated in the framework of the Lorenz circulation decomposition.This concept indicates the relative magnitude of the zonal nonuniform a... In this paper,the concept of stationary-wave nonstationarity is presented and elucidated in the framework of the Lorenz circulation decomposition.This concept indicates the relative magnitude of the zonal nonuniform abnormity to the intensity of stationary waves on the monthly mean scale.Based on the Lorenz circulation decomposition,the nonstationarity degree I_(us)(I_(us)~1) of the global(local) stationary waves is defined,and then used to analyze the stationary-wave nonstationarity at 30°-60°N,where the intensity of stationary waves at 500 hPa in the Northern Hemisphere,as is well known,is very high.The following findings are obtained:(1) There exist seasonal southward and northward movements in the position of the nonstationarity zones of the global stationary waves.The steady stationary waves occur in midlatitudes (35°-55°N) in winter and in the subtropical region(south of 35°N) in summer,associated with the major troughs over East Asia and North America and the weak European trough in winter,and with the relatively steady subtropical high system in summer.A high value center of I_(us) is at 35°N in spring and 50°N in summer,which might be caused by the seasonal variation of stationary-wave intensity,particularly in association with the interannual variability of trough/ridge positions of stationary waves on the monthly mean maps.(2) There exists obvious asymmetry in I_(us)~1,with the steady zones always located in the areas controlled by strong troughs/ridges and the unsteady ones in the areas where the stationary-wave intensity is low.The I_(us)~1 in the subtropics(south of 35°N) is larger in winter than in summer,and vice versa in the midlatitude region(north of 35°N).The summertime distribution of I_(us)~1 on the whole shows a rather complicated structure.However,North Europe is the most unsteady area for local stationary waves,as represented by high values of I_(us)~1 in both summer and winter,while over the North American continent (about 120°E-60°W),the I_(us)~1 is slightly less than 1 in summer,indicating that the stationary waves in this region are more steady than those over other mid and high latitude regions.(3) From North China to Northwest Pacific,there is a high value zone of I_(us)~1 in summer,with its center(45°N,130°E) located in the east of Heilongjiang Province.This influences the summer climate of northern China,including Northeast, North,and Northwest China.It is obvious that the nonstationarity is an intrinsic attribute of stationary waves,and can be regarded as being of the same importance as the intensity and energy-spectrum structure of stationary waves in the studies of the general circulation system. 展开更多
关键词 500-hPa geopotential height field stationary waves nonstationarity general circulation system
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部