Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorith...Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficultto-program applications, and software applications. It is a collection of a variety of algorithms(e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore,nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.展开更多
In the context of global climate change,geosciences provide an important geological solution to achieve the goal of carbon neutrality,China’s geosciences and geological technologies can play an important role in solv...In the context of global climate change,geosciences provide an important geological solution to achieve the goal of carbon neutrality,China’s geosciences and geological technologies can play an important role in solving the problem of carbon neutrality.This paper discusses the main problems,opportunities,and challenges that can be solved by the participation of geosciences in carbon neutrality,as well as China’s response to them.The main scientific problems involved and the geological work carried out mainly fall into three categories:(1)Carbon emission reduction technology(natural gas hydrate,geothermal,hot dry rock,nuclear energy,hydropower,wind energy,solar energy,hydrogen energy);(2)carbon sequestration technology(carbon capture and storage,underground space utilization);(3)key minerals needed to support carbon neutralization(raw materials for energy transformation,carbon reduction technology).Therefore,geosciences and geological technologies are needed:First,actively participate in the development of green energy such as natural gas,geothermal energy,hydropower,hot dry rock,and key energy minerals,and develop exploration and exploitation technologies such as geothermal energy and natural gas;the second is to do a good job in geological support for new energy site selection,carry out an in-depth study on geotechnical feasibility and mitigation measures,and form the basis of relevant economic decisions to reduce costs and prevent geological disasters;the third is to develop and coordinate relevant departments of geosciences,organize and carry out strategic research on natural resources,carry out theoretical system research on global climate change and other issues under the guidance of earth system science theory,and coordinate frontier scientific information and advanced technological tools of various disciplines.The goal of carbon neutrality provides new opportunities and challenges for geosciences research.In the future,it is necessary to provide theoretical and technical support from various aspects,enhance the ability of climate adaptation,and support the realization of the goal of carbon peaking and carbon neutrality.展开更多
Climate change and its impacts have become topical issues of global news,scientific research and conferences.Environmental Geosciences incorporate the various disciplines of geosciences and their multifaceted interact...Climate change and its impacts have become topical issues of global news,scientific research and conferences.Environmental Geosciences incorporate the various disciplines of geosciences and their multifaceted interactions with life.Research discussions on the interaction of climate change,geosciences and environment may often be blur,and Schmidt-Thoméet al.(2010)stated that“Often past climate changes that can be deduced from geological records may help in understanding the speed of potential climate change effects,i.e.how quickly have sea levels changed,how drastic has nature reacted to ups and downs in temperature,etc.These analyses of past events help in giving outlooks on potential changes in our living environment.It is also of important to understand the magnitude and potential effects of extreme events,such as droughts and floods”.展开更多
In the past two decades, artificial intelligence (AI) algorithms have proved to be promising tools for solving several tough scientific problems, As a broad subfield of AI, machine learning is concerned with algorit...In the past two decades, artificial intelligence (AI) algorithms have proved to be promising tools for solving several tough scientific problems, As a broad subfield of AI, machine learning is concerned with algorithms and techniques that allow computers to "learn". The machine learning approach covers main domains such as data mining, difficult-to-program applications, and soft- ware applications. It is a collection of a variety of algorithms that can provide multivariate, nonlinear, nonparametric regression or classification. The remarkable simulation capabilities of the ma- chine learning-based methods have resulted in their extensive ap- plications in science and engineering. Recently, the machine learning techniques have found many applications in the geoscien- ces and remote sensing. More specifically, these techniques are proved to be practical for cases where the system's deterministic model is computationally expensive or there is no deterministic model to solve the problem (Lary, 2010).展开更多
In China submarine geosciences represents a newly established discipline of oceanography, focusing on the oceanic lithosphere, and its interface with the hydrosphere and biosphere. Recently, supported by the National ...In China submarine geosciences represents a newly established discipline of oceanography, focusing on the oceanic lithosphere, and its interface with the hydrosphere and biosphere. Recently, supported by the National High Technology Research and Development Program and other high-tech development projects, significant progress has been made in the development of advanced technologies and equipment. This en- ables the scientists in China to carry out explorations of the international seabed area in the Pacific Ocean and on the Southwest Indian Ridge. In addition, they have been active in the research activities associated the mid-ocean ridges and western Pacific marginal seas. It is anticipated that this research field will continue to be highly fruitful in the near future.展开更多
The papers published in this issue are selected from manuscripts submitted by invited authors and most of these papers will be presented at the 33^rd International Geological Congress (33^rd IGC) in Oslo, August 200...The papers published in this issue are selected from manuscripts submitted by invited authors and most of these papers will be presented at the 33^rd International Geological Congress (33^rd IGC) in Oslo, August 2008. It receives 25 manuscripts and 16 were accepted after going through the journal normal peer reviewing process. The topics of the papers cover various aspects of "metallogenic complex processes and mineral resource quantitative assessment", one of the strategic research areas of the State Key Laboratory of Geological Processes Resources (GPMR) sponsored by the Science and Technology and the and Mineral Ministry of Ministry of Education of China. Researches in the area are also supported by the National Natural Science Foundation and Ministry of Land and Resources of China as well as by mining companies. Thanks are due to these funding programs and organizations for supporting the research activities of GPMR. Sincere thanks are due to those who have reviewed the manuscripts and provided critical comments and even English editing of some of the papers. We are very appreciated for the assistance of the editorial office especially Professor Wang, the editor-in-chief, Ms. Yuan and many others who have worked hard to make this issue be printed before the event of 33^rd IGC. Special thanks are given to Professor Xie Shuyun, Xu Deyi and Tali Neta and many other members in the Geomatics Research Lab of York University for handling the manuscripts during the reviewing processes.展开更多
China University of Geosciences(Beijing)(CUGB),is one of the leading universities listed in"Project 211,"a national program that offers more government financial support for the advancement of 100 top na...China University of Geosciences(Beijing)(CUGB),is one of the leading universities listed in"Project 211,"a national program that offers more government financial support for the advancement of 100 top national universities in 21<sup>st</sup>-century China.CUGB is also supported by the Ministry of Education for its uniquely strong strengths in geological disciplines.CUGB could be traced back to the former Beijing College of Geology,which was founded in 1952 by combining the Departments of Geology from Peking University, Tsinghua University,Tianjin University and Tangshan Railway College.In 1987,the predecessor of CUGB was renamed China University of Geosciences(Beijing).展开更多
FOUNDED in 1952, China University of Geosciences in Beijing (CUGB) is a national key university under the direct auspices of the Ministry of Education. Over the past 60 years, it has developed from a geological coll...FOUNDED in 1952, China University of Geosciences in Beijing (CUGB) is a national key university under the direct auspices of the Ministry of Education. Over the past 60 years, it has developed from a geological college tbcused on a single discipline to a multi- disciplinary comprehensive university, offering courses in geology, natural resources, environment and geological engineering.展开更多
文摘Learning incorporates a broad range of complex procedures. Machine learning(ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficultto-program applications, and software applications. It is a collection of a variety of algorithms(e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore,nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.
基金This study was supported by the project of China Geological Survey on a systematic assessment of ecological protection and natural resources utilization(DD20211413)。
文摘In the context of global climate change,geosciences provide an important geological solution to achieve the goal of carbon neutrality,China’s geosciences and geological technologies can play an important role in solving the problem of carbon neutrality.This paper discusses the main problems,opportunities,and challenges that can be solved by the participation of geosciences in carbon neutrality,as well as China’s response to them.The main scientific problems involved and the geological work carried out mainly fall into three categories:(1)Carbon emission reduction technology(natural gas hydrate,geothermal,hot dry rock,nuclear energy,hydropower,wind energy,solar energy,hydrogen energy);(2)carbon sequestration technology(carbon capture and storage,underground space utilization);(3)key minerals needed to support carbon neutralization(raw materials for energy transformation,carbon reduction technology).Therefore,geosciences and geological technologies are needed:First,actively participate in the development of green energy such as natural gas,geothermal energy,hydropower,hot dry rock,and key energy minerals,and develop exploration and exploitation technologies such as geothermal energy and natural gas;the second is to do a good job in geological support for new energy site selection,carry out an in-depth study on geotechnical feasibility and mitigation measures,and form the basis of relevant economic decisions to reduce costs and prevent geological disasters;the third is to develop and coordinate relevant departments of geosciences,organize and carry out strategic research on natural resources,carry out theoretical system research on global climate change and other issues under the guidance of earth system science theory,and coordinate frontier scientific information and advanced technological tools of various disciplines.The goal of carbon neutrality provides new opportunities and challenges for geosciences research.In the future,it is necessary to provide theoretical and technical support from various aspects,enhance the ability of climate adaptation,and support the realization of the goal of carbon peaking and carbon neutrality.
文摘Climate change and its impacts have become topical issues of global news,scientific research and conferences.Environmental Geosciences incorporate the various disciplines of geosciences and their multifaceted interactions with life.Research discussions on the interaction of climate change,geosciences and environment may often be blur,and Schmidt-Thoméet al.(2010)stated that“Often past climate changes that can be deduced from geological records may help in understanding the speed of potential climate change effects,i.e.how quickly have sea levels changed,how drastic has nature reacted to ups and downs in temperature,etc.These analyses of past events help in giving outlooks on potential changes in our living environment.It is also of important to understand the magnitude and potential effects of extreme events,such as droughts and floods”.
文摘In the past two decades, artificial intelligence (AI) algorithms have proved to be promising tools for solving several tough scientific problems, As a broad subfield of AI, machine learning is concerned with algorithms and techniques that allow computers to "learn". The machine learning approach covers main domains such as data mining, difficult-to-program applications, and soft- ware applications. It is a collection of a variety of algorithms that can provide multivariate, nonlinear, nonparametric regression or classification. The remarkable simulation capabilities of the ma- chine learning-based methods have resulted in their extensive ap- plications in science and engineering. Recently, the machine learning techniques have found many applications in the geoscien- ces and remote sensing. More specifically, these techniques are proved to be practical for cases where the system's deterministic model is computationally expensive or there is no deterministic model to solve the problem (Lary, 2010).
文摘In China submarine geosciences represents a newly established discipline of oceanography, focusing on the oceanic lithosphere, and its interface with the hydrosphere and biosphere. Recently, supported by the National High Technology Research and Development Program and other high-tech development projects, significant progress has been made in the development of advanced technologies and equipment. This en- ables the scientists in China to carry out explorations of the international seabed area in the Pacific Ocean and on the Southwest Indian Ridge. In addition, they have been active in the research activities associated the mid-ocean ridges and western Pacific marginal seas. It is anticipated that this research field will continue to be highly fruitful in the near future.
文摘The papers published in this issue are selected from manuscripts submitted by invited authors and most of these papers will be presented at the 33^rd International Geological Congress (33^rd IGC) in Oslo, August 2008. It receives 25 manuscripts and 16 were accepted after going through the journal normal peer reviewing process. The topics of the papers cover various aspects of "metallogenic complex processes and mineral resource quantitative assessment", one of the strategic research areas of the State Key Laboratory of Geological Processes Resources (GPMR) sponsored by the Science and Technology and the and Mineral Ministry of Ministry of Education of China. Researches in the area are also supported by the National Natural Science Foundation and Ministry of Land and Resources of China as well as by mining companies. Thanks are due to these funding programs and organizations for supporting the research activities of GPMR. Sincere thanks are due to those who have reviewed the manuscripts and provided critical comments and even English editing of some of the papers. We are very appreciated for the assistance of the editorial office especially Professor Wang, the editor-in-chief, Ms. Yuan and many others who have worked hard to make this issue be printed before the event of 33^rd IGC. Special thanks are given to Professor Xie Shuyun, Xu Deyi and Tali Neta and many other members in the Geomatics Research Lab of York University for handling the manuscripts during the reviewing processes.
文摘China University of Geosciences(Beijing)(CUGB),is one of the leading universities listed in"Project 211,"a national program that offers more government financial support for the advancement of 100 top national universities in 21<sup>st</sup>-century China.CUGB is also supported by the Ministry of Education for its uniquely strong strengths in geological disciplines.CUGB could be traced back to the former Beijing College of Geology,which was founded in 1952 by combining the Departments of Geology from Peking University, Tsinghua University,Tianjin University and Tangshan Railway College.In 1987,the predecessor of CUGB was renamed China University of Geosciences(Beijing).
文摘FOUNDED in 1952, China University of Geosciences in Beijing (CUGB) is a national key university under the direct auspices of the Ministry of Education. Over the past 60 years, it has developed from a geological college tbcused on a single discipline to a multi- disciplinary comprehensive university, offering courses in geology, natural resources, environment and geological engineering.