The high-resolution nonlinear simultaneous inversion of petrophysical parameters is based on Bayesian statistics and combines petrophysics with geostatistical a priori information. We used the fast Fourier transform–...The high-resolution nonlinear simultaneous inversion of petrophysical parameters is based on Bayesian statistics and combines petrophysics with geostatistical a priori information. We used the fast Fourier transform–moving average(FFT–MA) and gradual deformation method(GDM) to obtain a reasonable variogram by using structural analysis and geostatistical a priori information of petrophysical parameters. Subsequently, we constructed the likelihood function according to the statistical petrophysical model. Finally, we used the Metropolis algorithm to sample the posteriori probability density and complete the inversion of the petrophysical parameters. We used the proposed method to process data from an oil fi eld in China and found good match between inversion and real data with high-resolution. In addition, the direct inversion of petrophysical parameters avoids the error accumulation and decreases the uncertainty, and increases the computational effi ciency.展开更多
基金sponsored by the National Basic Research Program of China(No.2013CB228604)the Major National Science and Technology Projects(No.2011ZX05009)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2011DQ013)the National Science Foundation of China(No.41204085)
文摘The high-resolution nonlinear simultaneous inversion of petrophysical parameters is based on Bayesian statistics and combines petrophysics with geostatistical a priori information. We used the fast Fourier transform–moving average(FFT–MA) and gradual deformation method(GDM) to obtain a reasonable variogram by using structural analysis and geostatistical a priori information of petrophysical parameters. Subsequently, we constructed the likelihood function according to the statistical petrophysical model. Finally, we used the Metropolis algorithm to sample the posteriori probability density and complete the inversion of the petrophysical parameters. We used the proposed method to process data from an oil fi eld in China and found good match between inversion and real data with high-resolution. In addition, the direct inversion of petrophysical parameters avoids the error accumulation and decreases the uncertainty, and increases the computational effi ciency.