In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes consid...In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.展开更多
The impacts of ionospheric scintillation on geosynchronous synthetic aperture radar(GEO SAR)focusing is studied based on the multiple phase screen(MPS)theory.The power spectrum density of electron irregularities i...The impacts of ionospheric scintillation on geosynchronous synthetic aperture radar(GEO SAR)focusing is studied based on the multiple phase screen(MPS)theory.The power spectrum density of electron irregularities is first modified according to the ionospheric anisotropy.Then propagation wave equations in random medium are deduced in the case of oblique incidence in GEO SAR.The amplitude and phase errors induced by the random electron fluctuations are generated by the iterated MPS simulations and are superimposed into the GEO SAR signals.Through the following imaging and evaluation,the effects of the anisotropic ionospheric scintallition on GEO SAR are assessed.At last,the optimized integration time under different ionospheric scintillation conditions are recommended through Monte Carlo experiments.It is concluded that,greater ionospheric fluctuations and longer integration time will result in more severe deterioration,even no focus at all in the worst case.展开更多
The study on simulation of raw signal for spaceborne SAR aims at producing raw signal to test and evaluate the system and imaging algorithm. The model used for simulation includes a distributed target model, a platfor...The study on simulation of raw signal for spaceborne SAR aims at producing raw signal to test and evaluate the system and imaging algorithm. The model used for simulation includes a distributed target model, a platform and target geometry model, and a mathematical architecture used for generation of raw echo. Two aspects are stressed, one is the effects of earth ellip soid and attitude errors on radar impulse respense, the other is quick generation of range migration in azimuth frequency domain. Prescribed statistical characteristics of the model account for a realistic speckle of actual image. Finally, examples are given to validate the simulation of raw signal for spaceborne SAR.展开更多
Synthetic aperture radar (SAR) is portrayed as a multiple access channel. An information theory approach is applied to the SAR imaging system, and the information content about a target that can be extracted from its ...Synthetic aperture radar (SAR) is portrayed as a multiple access channel. An information theory approach is applied to the SAR imaging system, and the information content about a target that can be extracted from its radar image is evaluated by the average mutual information measure. A conditional (transition) probability density function (PDF) of the SAR imaging system is derived by analyzing the system and a closed form of the information content is found. It is shown that the information content obtained by the SAR imaging system from an independent sample of echoes will decrease and the total information content obtained by the SAR imaging system will increase with an increase in the number of looks. Because the total average mutual information is also used to define a measure of radiometric resolution for radar images, it is shown that the radiometric resolution of a radar image of terrain will be improved by spatial averaging. In addition, the imaging process and the data compression process for SAR are each treated as an independent generalized communication channel. The effects of data compression upon radiometric resolution for SAR are studied and some conclusions are obtained.展开更多
Forest ecosystems play a crucial role in mitigating global climate change by forming massive carbon sinks. Their carbon stocks and stock changes need to be quantified for carbon budget balancing and international repo...Forest ecosystems play a crucial role in mitigating global climate change by forming massive carbon sinks. Their carbon stocks and stock changes need to be quantified for carbon budget balancing and international reporting schemes. However, direct sampling and biomass weighing may not always be possible for quantification studies conducted in large forests. In these cases, indirect methods that use forest inventory information combined with remote sensing data can be beneficial. Synthetic aperture radar (SAR) images offer numerous opportunities to researchers as freely distributed remote sensing data. This study aims to estimate the amount of total carbon stock (TCS) in forested lands of the Kizildag Forest Enterprise. To this end, the actual storage capacities of five carbon pools, i.e. above- and below-ground, deadwood, litter, and soil, were calculated using the indirect method based on ground measurements of 264 forest inventory plots. They were then associated with the backscattered values from Sentinel-1 and ALOS-2 PALSAR-2 data in a Geographical Information System (GIS). Finally, TCS was separately modelled and mapped. The best regression model was developed using the HH polarization of ALOS-2 PALSAR-2 with an adjusted R^(2) of 0.78 (p < 0.05). According to the model, the estimated TCS was about 2 Mt for the entire forest, with an average carbon storage of 133 t ha^(−1). The map showed that the distribution of TCS was heterogenic across the study area. Carbon hotspots were mostly composed of pure stands of Anatolian black pine and mixed, over-mature stands of Lebanese cedar and Taurus fir. It was concluded that the total carbon stocks of forest ecosystems could be estimated using appropriate SAR images at acceptable accuracy levels for forestry purposes. The use of additional ancillary data may provide more delicate and reliable estimations in the future. Given the implications of this study, the spatiotemporal dynamics of carbon can be effectively controlled by forest management when coupled with easily accessible space-borne radar data.展开更多
针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目...针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。展开更多
基金supported by the National Natural Science Foundation of China(61771372,61771367,62101494)the National Outstanding Youth Science Fund Project(61525105)+1 种基金Shenzhen Science and Technology Program(KQTD20190929172704911)the Aeronautic al Science Foundation of China(2019200M1001)。
文摘In electromagnetic countermeasures circumstances,synthetic aperture radar(SAR)imagery usually suffers from severe quality degradation from modulated interrupt sampling repeater jamming(MISRJ),which usually owes considerable coherence with the SAR transmission waveform together with periodical modulation patterns.This paper develops an MISRJ suppression algorithm for SAR imagery with online dictionary learning.In the algorithm,the jamming modulation temporal properties are exploited with extracting and sorting MISRJ slices using fast-time autocorrelation.Online dictionary learning is followed to separate real signals from jamming slices.Under the learned representation,time-varying MISRJs are suppressed effectively.Both simulated and real-measured SAR data are also used to confirm advantages in suppressing time-varying MISRJs over traditional methods.
基金Supported by the National Natural Science Foundation of China(61225005,61427802,61471038,61120106004)Chang Jiang Scholars Program(T2012122)+1 种基金111 project of China(B14010)Beijing Higher Education Young Elite Teacher Project(YETP1168)
文摘The impacts of ionospheric scintillation on geosynchronous synthetic aperture radar(GEO SAR)focusing is studied based on the multiple phase screen(MPS)theory.The power spectrum density of electron irregularities is first modified according to the ionospheric anisotropy.Then propagation wave equations in random medium are deduced in the case of oblique incidence in GEO SAR.The amplitude and phase errors induced by the random electron fluctuations are generated by the iterated MPS simulations and are superimposed into the GEO SAR signals.Through the following imaging and evaluation,the effects of the anisotropic ionospheric scintallition on GEO SAR are assessed.At last,the optimized integration time under different ionospheric scintillation conditions are recommended through Monte Carlo experiments.It is concluded that,greater ionospheric fluctuations and longer integration time will result in more severe deterioration,even no focus at all in the worst case.
文摘The study on simulation of raw signal for spaceborne SAR aims at producing raw signal to test and evaluate the system and imaging algorithm. The model used for simulation includes a distributed target model, a platform and target geometry model, and a mathematical architecture used for generation of raw echo. Two aspects are stressed, one is the effects of earth ellip soid and attitude errors on radar impulse respense, the other is quick generation of range migration in azimuth frequency domain. Prescribed statistical characteristics of the model account for a realistic speckle of actual image. Finally, examples are given to validate the simulation of raw signal for spaceborne SAR.
文摘Synthetic aperture radar (SAR) is portrayed as a multiple access channel. An information theory approach is applied to the SAR imaging system, and the information content about a target that can be extracted from its radar image is evaluated by the average mutual information measure. A conditional (transition) probability density function (PDF) of the SAR imaging system is derived by analyzing the system and a closed form of the information content is found. It is shown that the information content obtained by the SAR imaging system from an independent sample of echoes will decrease and the total information content obtained by the SAR imaging system will increase with an increase in the number of looks. Because the total average mutual information is also used to define a measure of radiometric resolution for radar images, it is shown that the radiometric resolution of a radar image of terrain will be improved by spatial averaging. In addition, the imaging process and the data compression process for SAR are each treated as an independent generalized communication channel. The effects of data compression upon radiometric resolution for SAR are studied and some conclusions are obtained.
文摘Forest ecosystems play a crucial role in mitigating global climate change by forming massive carbon sinks. Their carbon stocks and stock changes need to be quantified for carbon budget balancing and international reporting schemes. However, direct sampling and biomass weighing may not always be possible for quantification studies conducted in large forests. In these cases, indirect methods that use forest inventory information combined with remote sensing data can be beneficial. Synthetic aperture radar (SAR) images offer numerous opportunities to researchers as freely distributed remote sensing data. This study aims to estimate the amount of total carbon stock (TCS) in forested lands of the Kizildag Forest Enterprise. To this end, the actual storage capacities of five carbon pools, i.e. above- and below-ground, deadwood, litter, and soil, were calculated using the indirect method based on ground measurements of 264 forest inventory plots. They were then associated with the backscattered values from Sentinel-1 and ALOS-2 PALSAR-2 data in a Geographical Information System (GIS). Finally, TCS was separately modelled and mapped. The best regression model was developed using the HH polarization of ALOS-2 PALSAR-2 with an adjusted R^(2) of 0.78 (p < 0.05). According to the model, the estimated TCS was about 2 Mt for the entire forest, with an average carbon storage of 133 t ha^(−1). The map showed that the distribution of TCS was heterogenic across the study area. Carbon hotspots were mostly composed of pure stands of Anatolian black pine and mixed, over-mature stands of Lebanese cedar and Taurus fir. It was concluded that the total carbon stocks of forest ecosystems could be estimated using appropriate SAR images at acceptable accuracy levels for forestry purposes. The use of additional ancillary data may provide more delicate and reliable estimations in the future. Given the implications of this study, the spatiotemporal dynamics of carbon can be effectively controlled by forest management when coupled with easily accessible space-borne radar data.
文摘针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。