According to relevant new regulations in China,a composite liner system involving geosynthetic materials must be installed at the bottom of an expanded landfill.The deformation and integrity of the composite liner und...According to relevant new regulations in China,a composite liner system involving geosynthetic materials must be installed at the bottom of an expanded landfill.The deformation and integrity of the composite liner under a variety of factors are important issue to be considered in the design of a landfill expansion.In this paper,we investigate the strain distribution in geosynthetic materials within the composite liner system of expanded landfills,including strains in geosynthetic materials resulting from overall settlement and lateral movement of landfills,localized subsidence in landfills,and differential settlement around gas venting wells.The allowable strains of geosynthetic materials are discussed based on the results of tensile tests,and the corresponding design criteria for composite liner systems are proposed.Meanwhile,practical measures allowing strain control in geosynthetic materials used in landfill engineering are proposed.展开更多
This study is to identify the critical interface in a geosynthetic multilayer liner system by examining the effects of the interface shear strength of liner components, leachate level, leachate buildup cases, and peak...This study is to identify the critical interface in a geosynthetic multilayer liner system by examining the effects of the interface shear strength of liner components, leachate level, leachate buildup cases, and peak and residual interface strengths. According to current landfill design procedures, conducting stability analysis along the same interface at both the back slope and base may result in a non-conservative result. The critical interfaces with the minimum factor of safety are generally found at different locations along the back slope and base. The critical interface for a multilayer liner system cannot simply be assumed during stability analysis. It can shift from one interface to another with changes in the leachate level and with different leachate buildup cases. The factor of safety for an interface with a high friction angle and low apparent cohesion generally drops much more quickly than it does under inverse conditions when the leachate level increases. The failure interface in a liner system under residual conditions is usually different from the failure interface under peak conditions.展开更多
In order to explore the effects of landfill composed of biogas residue and slurry on the improvement of soil nutrients and cherry fruit yield, three treatments: control (no landfill), landfilling with biogas residu...In order to explore the effects of landfill composed of biogas residue and slurry on the improvement of soil nutrients and cherry fruit yield, three treatments: control (no landfill), landfilling with biogas residue and water (BR), landfilling with biogas residue and slurry (BS) were conducted in a cherry orchard. The results showed that compared with the control, soil water content around the landfills with a radius of 60 cm within 30 d was increased in BR and BS treatments. The poment- age of short shoots and the total number of shoots of cherry trees were also signif- icantly increased by BR and BS treatments; the cherry fruit yield per tree and the single-fruit weight in BS treatment were increased by 21.76% and 28.89%, respec- tively. In addition, BS treatment obviously improved the contents of soil organic matter, soil available nitrogen, s0il available phosphorus, soil available potassium and other nutrients. The positive effects of BR treatment on the improvement of soil nutrients and cherry fruit yield were lower than those of BS treatment, indicating that the combined use of biogas residue and biogas slurry as landfill can improve the soil water and fertilizer status in orchards, and thus can be promoted in the cultivation of fruit trees.展开更多
In a landfill, excessive tensile strains or failure of the liner system due to localized subsidence underneath the geosynthetic liner, is a concern in design and operation of the landfill. The localized subsidence can...In a landfill, excessive tensile strains or failure of the liner system due to localized subsidence underneath the geosynthetic liner, is a concern in design and operation of the landfill. The localized subsidence can be commonly withstood by reinforcements such as geogrids. A total of nine model tests were carried out to study the influence of soil arching in overburden sandy soil on the geosynthetics and the interaction between the soil and the geosynthetics. The localized subsidence was modeled by a strip trapdoor under the geosynthetic reinforcements. The reinforcement includes several layers of polyvinylchlorid (PVC) membrane or both PVC membrane and a compacted clay layer. Test results show that the vertical soil pressure acting on the geosynthetics within the subsidence zone is strongly related to the deflection of the geosynthefics. The soil pressure acting on the deflected geosynthetics will decrease to a minimum value with respect to its deflection if the final deflection is large enough, and this minimum value is almost independent of the overburden height. Otherwise, the deflection of geosynthetics cannot result in a full degree of soil arching, and the soil pressure within the subsidence zone increases with the increase of overburden height. Deflections and strains of the geosynthetics obviously decrease with the increase of their tensile stiffness. The presence of a compacted clay layer buffer can therefore reduce both deflections and strains of the geosynthetics. Finally, a composite liner structure is recommended for landfills to withstand the localized subsidences.展开更多
The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the influence of the effective stress,chemical interactions,freeze-thaw cycles and temperature gradients.The changes of ...The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the influence of the effective stress,chemical interactions,freeze-thaw cycles and temperature gradients.The changes of void ratio caused by changes of effective stress have a direct linear effect on the hydraulic conductivity,regardless of the cation concentration or the thickness of the adsorbed layer.The hydraulic conductivity is related to the relative abundance of monovalent and divalent cation(RMD),and RMD has a great effect on the hydraulic conductivity in weak solution.The long-term susceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is minimal,which has been proved after 150 freeze-thaw cycles.The potential of desiccation cracking increases with the increasing temperature gradient and is related to the initial subsoil water content,the applied overburden stress,etc.展开更多
Along with the overall progress and development of market economy,Sponge City has received extensive attention,in order to establish a more compatible with the market development trend and environmental protection req...Along with the overall progress and development of market economy,Sponge City has received extensive attention,in order to establish a more compatible with the market development trend and environmental protection requirements of the control mechanism,it is necessary to scientifically plan synthetic materials,to a certain extent,to maintain the basic level of sponge city supervision work.In this paper,the research background of Geosynthetics applied in Sponge City construction is briefly analyzed,and the basic principles and specific application paths are discussed,which are for reference only.展开更多
基金Supported by the National Natural Science Foundation of China (50538080)
文摘According to relevant new regulations in China,a composite liner system involving geosynthetic materials must be installed at the bottom of an expanded landfill.The deformation and integrity of the composite liner under a variety of factors are important issue to be considered in the design of a landfill expansion.In this paper,we investigate the strain distribution in geosynthetic materials within the composite liner system of expanded landfills,including strains in geosynthetic materials resulting from overall settlement and lateral movement of landfills,localized subsidence in landfills,and differential settlement around gas venting wells.The allowable strains of geosynthetic materials are discussed based on the results of tensile tests,and the corresponding design criteria for composite liner systems are proposed.Meanwhile,practical measures allowing strain control in geosynthetic materials used in landfill engineering are proposed.
文摘This study is to identify the critical interface in a geosynthetic multilayer liner system by examining the effects of the interface shear strength of liner components, leachate level, leachate buildup cases, and peak and residual interface strengths. According to current landfill design procedures, conducting stability analysis along the same interface at both the back slope and base may result in a non-conservative result. The critical interfaces with the minimum factor of safety are generally found at different locations along the back slope and base. The critical interface for a multilayer liner system cannot simply be assumed during stability analysis. It can shift from one interface to another with changes in the leachate level and with different leachate buildup cases. The factor of safety for an interface with a high friction angle and low apparent cohesion generally drops much more quickly than it does under inverse conditions when the leachate level increases. The failure interface in a liner system under residual conditions is usually different from the failure interface under peak conditions.
基金Supported by Shandong Provincial Key Research and Development Project(2015GSF117005)Major Innovation Project for Applied Technology of Shandong Province(2017)~~
文摘In order to explore the effects of landfill composed of biogas residue and slurry on the improvement of soil nutrients and cherry fruit yield, three treatments: control (no landfill), landfilling with biogas residue and water (BR), landfilling with biogas residue and slurry (BS) were conducted in a cherry orchard. The results showed that compared with the control, soil water content around the landfills with a radius of 60 cm within 30 d was increased in BR and BS treatments. The poment- age of short shoots and the total number of shoots of cherry trees were also signif- icantly increased by BR and BS treatments; the cherry fruit yield per tree and the single-fruit weight in BS treatment were increased by 21.76% and 28.89%, respec- tively. In addition, BS treatment obviously improved the contents of soil organic matter, soil available nitrogen, s0il available phosphorus, soil available potassium and other nutrients. The positive effects of BR treatment on the improvement of soil nutrients and cherry fruit yield were lower than those of BS treatment, indicating that the combined use of biogas residue and biogas slurry as landfill can improve the soil water and fertilizer status in orchards, and thus can be promoted in the cultivation of fruit trees.
基金supported by the National Basic Research Program of China(No. 2012CB719800)the National Natural Science Foundation of China (No. 51127005)the Key Innovative Team Program of Zhejiang Province (No. 2009R50050), China
文摘In a landfill, excessive tensile strains or failure of the liner system due to localized subsidence underneath the geosynthetic liner, is a concern in design and operation of the landfill. The localized subsidence can be commonly withstood by reinforcements such as geogrids. A total of nine model tests were carried out to study the influence of soil arching in overburden sandy soil on the geosynthetics and the interaction between the soil and the geosynthetics. The localized subsidence was modeled by a strip trapdoor under the geosynthetic reinforcements. The reinforcement includes several layers of polyvinylchlorid (PVC) membrane or both PVC membrane and a compacted clay layer. Test results show that the vertical soil pressure acting on the geosynthetics within the subsidence zone is strongly related to the deflection of the geosynthefics. The soil pressure acting on the deflected geosynthetics will decrease to a minimum value with respect to its deflection if the final deflection is large enough, and this minimum value is almost independent of the overburden height. Otherwise, the deflection of geosynthetics cannot result in a full degree of soil arching, and the soil pressure within the subsidence zone increases with the increase of overburden height. Deflections and strains of the geosynthetics obviously decrease with the increase of their tensile stiffness. The presence of a compacted clay layer buffer can therefore reduce both deflections and strains of the geosynthetics. Finally, a composite liner structure is recommended for landfills to withstand the localized subsidences.
文摘The state of the art of the study on the hydraulic conductivity of GCLs is presented in terms of the influence of the effective stress,chemical interactions,freeze-thaw cycles and temperature gradients.The changes of void ratio caused by changes of effective stress have a direct linear effect on the hydraulic conductivity,regardless of the cation concentration or the thickness of the adsorbed layer.The hydraulic conductivity is related to the relative abundance of monovalent and divalent cation(RMD),and RMD has a great effect on the hydraulic conductivity in weak solution.The long-term susceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is minimal,which has been proved after 150 freeze-thaw cycles.The potential of desiccation cracking increases with the increasing temperature gradient and is related to the initial subsoil water content,the applied overburden stress,etc.
文摘Along with the overall progress and development of market economy,Sponge City has received extensive attention,in order to establish a more compatible with the market development trend and environmental protection requirements of the control mechanism,it is necessary to scientifically plan synthetic materials,to a certain extent,to maintain the basic level of sponge city supervision work.In this paper,the research background of Geosynthetics applied in Sponge City construction is briefly analyzed,and the basic principles and specific application paths are discussed,which are for reference only.