In this paper, parallel library, portable extensible toolkit for scientific computation (FETSc), 18 used to solve linear systems in soil-water coupled finite element method (FEM) for geotechnical problems. The par...In this paper, parallel library, portable extensible toolkit for scientific computation (FETSc), 18 used to solve linear systems in soil-water coupled finite element method (FEM) for geotechnical problems. The parallel environment is integrated into GLEAVES, which is a geotechnical software package used for the finite elementsimulation. The linear system Ax = b which is a fundamental and the most time-consuming part of the FEM is solved with iterative solvers in PETSc. In order to find a robust and effective combination of iterative solvers and corresponding preconditioners for the soil-water coupled problems, performance evaluations on Krylov subspace methods and four preconditioners are carried out. The results indicate that general minimal residual (GMRES) method coupled with preconditioners can provide an effective solution. The application to a construction project is presented to illustrate the potential of the proposed solution.展开更多
基金the National Natural Science Foundation of China(Nos.41172251 and 41002097)
文摘In this paper, parallel library, portable extensible toolkit for scientific computation (FETSc), 18 used to solve linear systems in soil-water coupled finite element method (FEM) for geotechnical problems. The parallel environment is integrated into GLEAVES, which is a geotechnical software package used for the finite elementsimulation. The linear system Ax = b which is a fundamental and the most time-consuming part of the FEM is solved with iterative solvers in PETSc. In order to find a robust and effective combination of iterative solvers and corresponding preconditioners for the soil-water coupled problems, performance evaluations on Krylov subspace methods and four preconditioners are carried out. The results indicate that general minimal residual (GMRES) method coupled with preconditioners can provide an effective solution. The application to a construction project is presented to illustrate the potential of the proposed solution.