The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generatio...The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generation in each basin is also different. An east-west profile of the thermal threshold across the continental basins of China, like the Liaohe Basin, the North China Basin, the Ordos Basin, the Qaidam Basin and the Tarim Basin, was constructed using large numbers of heat flow measurements, temperature data and rock thermophysical parameters. Isotherms, surface heat flow, mantle heat flow and Moho temperature beneath the basins are shown in the profile, which illustrates changes in some thermal characteristics between basins in east China and those in west China. Thermal evolution histories in basins were reconstructed using Easy%Ro method, apatite fission track annealing and other paleothermometers. Typical hydrocarbon generation histories of the primary source rocks were modeled by referring to the thermal evolution data. Thermal stages controlled source rocks maturation and oil and gas generation, and influenced the type of hydrocarbon (oil and gas) production in the basins.展开更多
The present geothermal gradient and terrestrial heat flow was calculated of 18 wells in the Jianghan Basin.Thermal gradient distribution of the Jianghan Basin was obtained based on data of systematical steady-state te...The present geothermal gradient and terrestrial heat flow was calculated of 18 wells in the Jianghan Basin.Thermal gradient distribution of the Jianghan Basin was obtained based on data of systematical steady-state temperature and oil-test temperature.The basin-wide average thermal gradient in depth interval of 0-4000 m is 33.59℃/km.We report nine measured terrestrial heat flow values based on the data of detailed thermal conductivity and systematical steady-state temperature.These values vary from 41.9 to 60.9 mW/m 2 with a mean of 52.3±6.3 mW/m 2.However,thermal history analyses based on vitrinite reflectance(VR) and apatite fission track(AFT) data indicate that thermal gradient in the northern and southern Qianbei Fault reached its peak of ~36 and ~39℃/km respectively in the Middle Jurassic and the Oligocene,and it descended during the early Miocene to the present-time value.Furthermore,tectonic subsidence analysis reveals that the tectonic subsidence of the Jianghan Basin in the Cretaceous to early Miocene was characterized by synrift initial subsidence followed by the subsequent thermal subsidence.The thermal history and tectonic subsidence history of Jianghan Basin are of great significance to petroleum exploration and hydrocarbon source assessment,because they bear directly on issues of petroleum source rock maturation.Based on the thermal history and tectonic subsidence history,with the combination of geochemical and thermal parameters,the maturation and the hydrocarbon generation intensity evolution history of the P2d source rocks are modeled.The results show that the P2d source rocks are in a higher degree of maturation at present,and the Yuan'an and Herong sags are the two most important kitchens in the Late Jurassic,Xiaoban Sag is another most important kitchen during the Late Cretaceous to late Paleogene,and the Zhijiang and Mianyang sags are other two important hydrocarbon kitchens in the Late Cretaceous.The Mianyang Sag and Yichang Ramp are the favorable exploration targets in the future.This study may provide new insight for the understanding of the oil and gas exploration potential for the Jianghan Basin.展开更多
? This paper presents a brief analysis of the geothermal fields of Meso-Cenozoic basins and their evolution in East China by means of heat flow, geotemperature gradient, vitrinite reflectence and its gradient in t...? This paper presents a brief analysis of the geothermal fields of Meso-Cenozoic basins and their evolution in East China by means of heat flow, geotemperature gradient, vitrinite reflectence and its gradient in the basins, and reveals a basic framework of the geothermal regime of the basins. The geothermal regime of Meso-Cenozioc basins in East China is mainly dominated by tectonic conditions. The important factor determining the geothermal state of basins is the thickness of lithosphere—burial depth of asthenospheric top, which is related to geodynamic type of basins. Basins in the western zone, represented by Sichuan and Ordos, belong to the flexure basins on the basement of continental block, with thick lithosphere, generally 120-150 km. All basins in this zone fall into middle heat basin type in the light of their lower ancient and present geotemperature gradient. While the middle zone is represented by Songliao and Bohaiwan basins, the continental margin zone is represented by East China Sea shelf basin and northern continental shelf basins of South China Sea. They belong to the extensional basins with thinning lithosphere, the smallest burial depth of paleoasthenospheric top, being 55-60 km. Therefore they should belong to heat basin type. The geothermal state of the basins is correlated positively with extension degree in the majority of basins controlled by dynamic mechanism of extension and transtension.展开更多
Thermobarometric calculations for mineral diamond inclusions and associations(DIA)provide a systematic comparison of PTXFO2 conditions for different cratons worldwide,using a database of 4440 mineral EPMA analyses(Ash...Thermobarometric calculations for mineral diamond inclusions and associations(DIA)provide a systematic comparison of PTXFO2 conditions for different cratons worldwide,using a database of 4440 mineral EPMA analyses(Ashchepkov et al.,2021).展开更多
文摘The thermal regimes in sedimentary basins in the continental area of China are varied and reflect differences in geological settings. As a result of these variable thermal regimes, the history of hydrocarbon generation in each basin is also different. An east-west profile of the thermal threshold across the continental basins of China, like the Liaohe Basin, the North China Basin, the Ordos Basin, the Qaidam Basin and the Tarim Basin, was constructed using large numbers of heat flow measurements, temperature data and rock thermophysical parameters. Isotherms, surface heat flow, mantle heat flow and Moho temperature beneath the basins are shown in the profile, which illustrates changes in some thermal characteristics between basins in east China and those in west China. Thermal evolution histories in basins were reconstructed using Easy%Ro method, apatite fission track annealing and other paleothermometers. Typical hydrocarbon generation histories of the primary source rocks were modeled by referring to the thermal evolution data. Thermal stages controlled source rocks maturation and oil and gas generation, and influenced the type of hydrocarbon (oil and gas) production in the basins.
基金supported by National Natural Science Foundation of China(Grant No.41102152)Sinopec Marine Prospective Study Program(Grant No.2007CB411704)
文摘The present geothermal gradient and terrestrial heat flow was calculated of 18 wells in the Jianghan Basin.Thermal gradient distribution of the Jianghan Basin was obtained based on data of systematical steady-state temperature and oil-test temperature.The basin-wide average thermal gradient in depth interval of 0-4000 m is 33.59℃/km.We report nine measured terrestrial heat flow values based on the data of detailed thermal conductivity and systematical steady-state temperature.These values vary from 41.9 to 60.9 mW/m 2 with a mean of 52.3±6.3 mW/m 2.However,thermal history analyses based on vitrinite reflectance(VR) and apatite fission track(AFT) data indicate that thermal gradient in the northern and southern Qianbei Fault reached its peak of ~36 and ~39℃/km respectively in the Middle Jurassic and the Oligocene,and it descended during the early Miocene to the present-time value.Furthermore,tectonic subsidence analysis reveals that the tectonic subsidence of the Jianghan Basin in the Cretaceous to early Miocene was characterized by synrift initial subsidence followed by the subsequent thermal subsidence.The thermal history and tectonic subsidence history of Jianghan Basin are of great significance to petroleum exploration and hydrocarbon source assessment,because they bear directly on issues of petroleum source rock maturation.Based on the thermal history and tectonic subsidence history,with the combination of geochemical and thermal parameters,the maturation and the hydrocarbon generation intensity evolution history of the P2d source rocks are modeled.The results show that the P2d source rocks are in a higher degree of maturation at present,and the Yuan'an and Herong sags are the two most important kitchens in the Late Jurassic,Xiaoban Sag is another most important kitchen during the Late Cretaceous to late Paleogene,and the Zhijiang and Mianyang sags are other two important hydrocarbon kitchens in the Late Cretaceous.The Mianyang Sag and Yichang Ramp are the favorable exploration targets in the future.This study may provide new insight for the understanding of the oil and gas exploration potential for the Jianghan Basin.
文摘? This paper presents a brief analysis of the geothermal fields of Meso-Cenozoic basins and their evolution in East China by means of heat flow, geotemperature gradient, vitrinite reflectence and its gradient in the basins, and reveals a basic framework of the geothermal regime of the basins. The geothermal regime of Meso-Cenozioc basins in East China is mainly dominated by tectonic conditions. The important factor determining the geothermal state of basins is the thickness of lithosphere—burial depth of asthenospheric top, which is related to geodynamic type of basins. Basins in the western zone, represented by Sichuan and Ordos, belong to the flexure basins on the basement of continental block, with thick lithosphere, generally 120-150 km. All basins in this zone fall into middle heat basin type in the light of their lower ancient and present geotemperature gradient. While the middle zone is represented by Songliao and Bohaiwan basins, the continental margin zone is represented by East China Sea shelf basin and northern continental shelf basins of South China Sea. They belong to the extensional basins with thinning lithosphere, the smallest burial depth of paleoasthenospheric top, being 55-60 km. Therefore they should belong to heat basin type. The geothermal state of the basins is correlated positively with extension degree in the majority of basins controlled by dynamic mechanism of extension and transtension.
基金supported by the RFBR grant 19-05-00788supported by the Ministry of Science and Higher Education of the Russian Federation
文摘Thermobarometric calculations for mineral diamond inclusions and associations(DIA)provide a systematic comparison of PTXFO2 conditions for different cratons worldwide,using a database of 4440 mineral EPMA analyses(Ashchepkov et al.,2021).