Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt...Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt of China,is a typical geothermal anomaly and contains abundant medium-and low-temperature geothermal resources.This study employed hydrogeochemical and isotopic techniques to explore the cyclic evolution of geothermal water in the western Wugongshan region,encompassing the recharge origin,water-rock interaction mechanisms,and residence time.The results show that the geothermal water in the western region of Wugongshan is weakly alkaline,with low enthalpy and mineralization levels.The hydrochemistry of geothermal waters is dominated by Na-HCO_(3)and Na-SO_(4),while the hydrochemistry types of cold springs are all Na-HCO_(3).The hydrochemistry types of surface waters and rain waters are NaHCO_(3)or Ca-HCO_(3).The δD and δ^(18)O values reveal that the geothermal waters are recharged by atmospheric precipitation at an altitude between 550.0 and 1218.6 m.Molar ratios of maj or solutes and isotopic compositions of^(87)Sr/^(86)Sr underscore the significant role of silicate weathering,dissolution,and cation exchange in controlling geothermal water chemistry.Additionally,geothermal waters experienced varying degrees of mixing with cold water during their ascent.Theδ^(13)C values suggest that the primary sources of carbon in the geothermal waters were biogenic and organic.Theδ^(34)S value suggests that the sulfates in geothermal water originate from sulfide minerals in the surrounding rock.Age dating using 3H and^(14)C isotopes suggests that geothermal waters have a residence time exceeding 1 kaBP and undergo a long-distance cycling process.展开更多
The geothermal waters of south hot spring, small hot spring and Qiaokouba in Chongqing, are all part of the south hot spring geothermal water system. Exploitation has caused a decline in the water levels of the south ...The geothermal waters of south hot spring, small hot spring and Qiaokouba in Chongqing, are all part of the south hot spring geothermal water system. Exploitation has caused a decline in the water levels of the south and small hot springs, which have not flowed naturally for 15 years. Now, bores pump geothermal water to the springs. If the water level drops below the elevation of the rivers, river-water will replenish the geothermal water, destroying this resource. It is therefore an urgent task to model the geothermal water system, to enable sustainable development and continued use of the geothermal water in Qiaokouba. A numerical simulation of the geothermal water system was adopted and a quantitative study on the planning scheme was carried out. A mathematical model was set up to simulate the whole geothermal water system, based on data from the research sites. The model determined the maximum sustainable water yield in Qiaokouba and the two hot springs, and the south hot spring and small hot spring sustainable yields are 1 100 m^3/d and 700 m^3/d from 2006 to 2010, 1 300 m^3/d and 1 000 m^3/d from 2011 to 2015, and 1 500 m^3/d and 1 200 m^3/d from 2016 to 2036. The maximum exploitable yield is 3 300 m^3/d from 2006 to 2036 in Qiaokouba. The model supplies a basis to adequately exploit and effectively protect the geothermal water resources, and to continue to develop the geothermal water as a tourist attraction in Chongqing.展开更多
Nyemo-Nagqu, Tibet, is rich in high-temperature geothermal resources. The geothermal fields in Yangbajain and Yangyi as well as 11 unexplored geothermal fields along the geothermal belt from Nyemo to Nagqu were system...Nyemo-Nagqu, Tibet, is rich in high-temperature geothermal resources. The geothermal fields in Yangbajain and Yangyi as well as 11 unexplored geothermal fields along the geothermal belt from Nyemo to Nagqu were systematically investigated and the hydrochemistry data were collected from the whole field. Meanwhile, H-O-C-S isotope data were obtained for the new fields, and H-O isotope data for the Yangbajain and Yangyi fields. A comparison of the Nyemo-Nagqu geothermal fields with those in the Yangbajain area shows that the types of high-temperature geothermal water are dominated by Cl-Na and Cl·HCO3-Na, while the types of medium-high-temperature geothermal water are dominated by HCO3-Na. The concentrations of Li, F, SiO2, and HBO2 in the geothermal water are positively correlated with Cl content, indicating possible mixing with magma water. The reservoir temperatures range from 90 to 270°C by geothermometers. Slight drifting of 18O was recorded at the Dongweng and Nyingzhong high-temperature geothermal fields, while more significant drifting was recorded at Gulu. The geothermal water is mainly replenished by atmospheric precipitation. The low tritium contents(〈1 TU) of the geothermal water from Nyingzhong, Gulu, and Luoma indicate that it is mainly replenished by sub-modern(prior to 1952) water, while the high tritium content(8.4 TU) in Yuela implies modern water replenishment. Other geothermal fields are replenished by a mix of sub-modern fresher water. The isotopic data in this study show that the carbon and sulfur in the geothermal water originates mainly from sediment leaching, with some of the carbon and sulfur having a deep origin.展开更多
In this study, the Ag/Ag Cl/WO3 plasmonic Z-scheme photocatalysts with different contents of Ag/Ag Cl nanoparticles(NPs) were prepared through a facile ultrasonic precipitation method in geothermal water,wherein the...In this study, the Ag/Ag Cl/WO3 plasmonic Z-scheme photocatalysts with different contents of Ag/Ag Cl nanoparticles(NPs) were prepared through a facile ultrasonic precipitation method in geothermal water,wherein the geothermal water served as the chlorine source. Then the photocatalytic activity was investigated by degradation of 4-Aminobenzoic acid(4-ABA) under visible-light irradiation. It was found that the as-prepared 50 wt% Ag/Ag Cl/WO3 photocatalyst showed the highest photocatalytic efficiency with 25.12 and 3.53 times higher than those of pure WO3 and Ag/Ag Cl, respectively. The active species trapping experiments indicated that h+and ·O2-were key factors in 4-ABA photodegradation process. The possible plasmonic Z-scheme photocatalytic mechanism of photocatalytic reaction for 4-ABA degradation was proposed based on systematical characterizations. We hope this paper could give new ideas for further exploiting geothermal energy to design and fabricate highly efficient visible-light-driven photocatalysts for environmental remediation.展开更多
Longling is characterized by a wide distribution of hydrothermal areas, among which the Banglazhang hydrothermal system is the most geothermally active. Banglazhang is marked by intensive hydrothermal activities inclu...Longling is characterized by a wide distribution of hydrothermal areas, among which the Banglazhang hydrothermal system is the most geothermally active. Banglazhang is marked by intensive hydrothermal activities including hot springs, geysers, fumaroles and hydrothermal explosions. The geothermal waters from the Longling region are mainly HCO3-Na type with low but comparable SO4 and Cl concentrations. Calculations based on a variety of chemical geothermometers and a K-Ca geobarometer indicate that the Banglazhang hydrothermal system has much higher subsurface temperature and CO2 pressure compared to the other systems such as Daheba, Dazhulin and Huangcaoba. However, geothermal water samples collected from all these alternative hydrothermal areas are either partially equilibrated with reservoir minerals or are immature. The silica-enthalpy relationships of Banglazhang geothermal waters indicate the presence of a deep geothermal fluid with an enthalpy value and silica concentration of 945 J/g(up to around 220 °C) and 339 mg/L. Our work indicates the Banglazhang area is a promising source in terms of long-term utilization of hydrothermal resources.展开更多
On the basis of discussion about hydro-geologic condition of geothermal water in Xiaoquan area, Chongqing, a three-dimensional mathematical model was established. The Modflow(a modular three-dimensional finite-differe...On the basis of discussion about hydro-geologic condition of geothermal water in Xiaoquan area, Chongqing, a three-dimensional mathematical model was established. The Modflow(a modular three-dimensional finite-difference groundwater model) software was adopted to simulate the geothermal water, and quantificational study on sustainable exploration of the geothermal water in Xiaoquan area was carried out. Firstly, a mathe- matical model was set up. Then, the geothermal water was simulated by Modflow software, and the mathematical model was identified. The simulative water level was compared with the actual water level and the mathematical model was calibrated. The feasibility of appli- cation of this mathematical model to studying underground geothermal water was proved that the simulative water level is approximated to actual one, and a right mathematical model was obtained. This mathematical model was used to simulate geothermal water under different exploitation conditions, at last the yields of sustainable exploitation includ- ing the maximum yield and the optimal yield were determined.展开更多
To study the mechanism of bio-clogging in a porous medium during the reinjection of geothermal water and to improve reinjection efficiency, an indoor one-dimensional reinjection experiment was conducted based on the g...To study the mechanism of bio-clogging in a porous medium during the reinjection of geothermal water and to improve reinjection efficiency, an indoor one-dimensional reinjection experiment was conducted based on the geological model of the geothermal reinjection demonstration project in Dezhou City. The biological process of porous media clogging was investigated by analyzing the variation of permeability within the medium, the main indexes of nutrient salts, and the content of extracellular polymeric substances (EPS). High-throughput sequencing, based on 16S rRNA, was used to analyze the characteristics and succession of microbial communities during the reinjection of geothermal water. The results of the study show that significant bio-clogging occurs during the reinjection of geothermal water, with an increase in the heterogeneity of the thermal reservoir medium, and a decrease in permeability. The extent of clogging gradually reduces with an increase in seepage path. Thus, thermal reservoir clogging is more serious closer to the water inlet. With an increase in the duration of reinjection, the permeability of the porous medium undergoes three stages: “rapid”, “decline-slow”, and “decrease-stable”. The results show that the richness and diversity of the bacterial community increase and decrease, respectively, during the reinjection process. Bacterial community succession occurs, and the bacterial communities mainly include the Proteobacteria and Bacteroidetes phyla. <em>Pseudomonas</em> and <em>Devosia</em> are respectively the dominant bacteria in the early and late stages of geothermal water reinjection.展开更多
Study on the Nuanquanzi geothermal field in the Yanshan uplift is of great significance for understanding the origin of geothermal fluid in the intracontinental orogenic belt of the fault depression basin margin in No...Study on the Nuanquanzi geothermal field in the Yanshan uplift is of great significance for understanding the origin of geothermal fluid in the intracontinental orogenic belt of the fault depression basin margin in North China.The geochemical characteristics and formation mechanism of the Nuanquanzi geothermal system were elucidated by classical hydrogeochemical analysis,multi-isotopes approach(δD,δ^(18)O,δ^(13)C,δ^(87)Sr/^(86)Sr),14CAMSdating,and integrated geophysical prospecting of surface-soil radon gas measurement and CSAMT inversion.The results show that the Nuanquanzi geothermal field is a medium-low temperature convection-fault semi-enclosed geothermal system.The hydrochemical type of thermal water is primarily HCO_(3)-Na,and rich in soluble SiO_(2),F^(-)and Cl^(-).The geothermal water primarily originated from the recharging meteoric water with a maximum circulation depth of 2400-3200 m,but affected by the mixing of endogenous sedimentary water.The reservoir temperature calculated by Na-K and quartz geothermometer of the Nuanquanzi geothermal system was determined to be 73.39-92.87℃.The conduction-cooling and shallow cold-water mixing processes occurred during the parent geothermal fluid ascent to surface,and the proportion of cold-water mixing during circulation was approximately 88.3%to 92.2%.The high-anomaly radon zones matched well to the low apparentresistance areas and hiding faults,indicating that the Nuanquanzi geothermal field was dominated by a graben basin restricted by multiple faults.展开更多
High residual concentration of arsenic and fluoride is a tricky problem to be solved in the process of reinjection after geothermal water utilization.We develop a method to simultaneously remove As(V)and F-from geothe...High residual concentration of arsenic and fluoride is a tricky problem to be solved in the process of reinjection after geothermal water utilization.We develop a method to simultaneously remove As(V)and F-from geothermal water using magnetic Fe_(3)O_(4)@MgO adsorbent,fabricated via a one-step method.The effects of pH,contact time,adsorbent dose and temperature on the removal efficiency were investigated systematically.The results show that the Fe_(3)O_(4)@MgO composite has a wide range of pH(2-11),ultrafast removal dynamics(As(V):2 min;F-:30 min),and high removal efficiency(As(V):99.9%;F-:96.6%).The adsorption kinetics follows the pseudo-secondorder kinetics model,and the adsorption isotherm model fits Freundlich.The adsorption capacity of As(V)and F-can reach 123 and 98.4 mg/g,respectively.The exchange of As(V)and F-with Mg-hydroxyl groups hydrolysis by MgO was determined the adsorption mechanism.The Fe_(3)O_(4)@MgO adsorbent was capable of achieving the adsorption efficiency as high as 99.9%for As(V)and 97.3%for F-in real geothermal water,respectively.Hence,the proposed Fe_(3)O_(4)@MgO composite exhibited as an excellent adsorbent for the remediation of As-and F-contaminated geothermal water.展开更多
The Xi'an Depression in the Guanzhong Basin of western China has been suggested to contain geothermal resources that could aid China in achieving carbon neutrality and optimizing energy structure.However,the high ...The Xi'an Depression in the Guanzhong Basin of western China has been suggested to contain geothermal resources that could aid China in achieving carbon neutrality and optimizing energy structure.However,the high concentration of total dissolved solids(TDS)and scale-forming ions in geothermal water from the depression causes severe scaling problems in harvesting geothermal energy.To reduce scale-related problems,accurate identification of scale types and prediction of scaling during geothermal energy utilization are crucial.This study starts with identifying the types and trends of scaling in the study area,using index-based discriminant methods and hydrogeochemical simulation to calculate and analyze the mineral saturation index of water samples from some wellheads and of reconstructed fluid samples of geothermal reservoirs.The results indicate that the scales are mostly calcium carbonate scales rather than sulfate scales as a result of temperature changes.Several portions of the geothermal water systems are found to have distinct mineral scaling components.Quartz and chalcedony are formed in low temperature areas,while carbonate minerals are in high temperature areas.Despite the low iron content of geothermal water samples from the study area,scaling is very common due to scaling-prone iron minerals.The findings can be used to evaluate geothermal drainage systems and guide anti-scaling during geothermal energy utilization in similar settings.展开更多
Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of wate...Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.展开更多
Statistical study of analyses of water from 43 samples from geothermal wells, three groundwater wells, and one sample of local rainwater along with rainwater data from the Global Net- work of Isotopes in Precipitation...Statistical study of analyses of water from 43 samples from geothermal wells, three groundwater wells, and one sample of local rainwater along with rainwater data from the Global Net- work of Isotopes in Precipitation has been used to identify the origin and evolution of geothermal water in the Niutuozhen (~f=~jg) geothermal field and estimate the renewability rate of its geothermal re- source. The results show that the geothermal waters of the Jixianian Wumishanian dolomite reservoir and the Ordovician limestone reservoir are of CI-Na type, the geothermal water of the Pliocene Minghuazben (H~/~) Formation sandstone reservoir are CI-Na type and HCO3-Na type and the groundwater of the Quaternary aquifer is HCO3-Na and HCO3-Na.Mg.Ca type. A linear relationship between silica concentration and temperature indicates that higher temperature probably enhances concentration of silica in Jixianian geothermal water. 81SO shift in Wumishanian geothermal water av- eraged 1.57%o, and was less than 1%o in the other geothermal waters. The minimum and maxi-mum 14C ages of Wumishanian geothermal wa- ter are 17 000 and 33 000 years from north to the south of the Niutuozhen geothermal field. Geo- thermal water and Quaternary groundwater belong to different groundwater systems with no hydraulic connections. Although the geothermal field receives some recharge from the Yanshan and Taihang mountains outside the northern and western boundaries of the geothermal field re- spectively, the renewability rate of geothermal water is on the scale of 10 000 years.展开更多
Boron concentrations and isotope compositions have been measured for 93 water samples from the hot springs and drill-holes in the geothermal system in the Yunnan-Tibet Geothermal Belt(YTGB),China.Boron concentrations ...Boron concentrations and isotope compositions have been measured for 93 water samples from the hot springs and drill-holes in the geothermal system in the Yunnan-Tibet Geothermal Belt(YTGB),China.Boron concentrations range from 0.036–472.4ppm,and theδ11B values range from -16.0‰to 13.1‰,indicating the non-marine origin for each geothermal system.We observed a clear binary mixing relationship between the B concentrations and B isotope compositions in Tibet geothermal area.This relationship can be well explained by two sources,i.e.,marine carbonate rocks and magmatic rocks,for the Tibet geothermal water.No evidence supports a mantle contribution to B.In addition,we found that the precipitation only plays a dilution role for B of geothermal waters.δ11B values for the precipitation across the southern Tibetan Plateau area range from -6.0‰ to -6.8‰at least.Due to data scarcity in Yunnan geothermal area,we observed possible different boron sources from the Tibet geothermal system.Comparing it with other geothermal systems in the world,we found that the samples from YTGB have the lowestδ11B values and the largest range of B concentration,which might be related to their special geological background.On the whole,the world geothermalδ11B-Cl/B relation suggests a mixing process between marine and non-marine sources.Additionally,we suggest that B source of B-enriched geothermal waters is mainly from B-enriched crustal country-rocks,instead of mantle.展开更多
The Nanwenquan (South Hot Spring) and Xiao quan (Small Hot Spring) in the Nanwenquan anticline are well-known attraction for their geothermal water, but currently, the two natural hot springs have hot flow natural...The Nanwenquan (South Hot Spring) and Xiao quan (Small Hot Spring) in the Nanwenquan anticline are well-known attraction for their geothermal water, but currently, the two natural hot springs have hot flow naturally. In order to protect the geothermal water resource, the evolution of hydrodynamic field must be researched for the causation of the hydrodynamic field destroyed. The finite element numerical simulation was adopted and quantitative study on the geothermal water hydrodynamic field. The finite element model was set up to simulate the research sites, the simulated water level was compared with the actual water level, the feasibility of this model was proved when the simulated water level is approximate to actual one, and an applicable finite element model was obtained. The finite element model was used to simulate the evolution of the hydrodynamic field. This paper supplies a basis to exploit adequately and protect effectively the geothermal water resource, at the same time it is proved feasible in practice to apply finite element numerical simulation to quantitative study of the geothermal water.展开更多
Combined with tectonic evolution, a multi-isotopic method (δD, δ^18O, ^87Sr/^86Sr and ^14C) and hydrochemistry data have been used to study the origin and classification of geothermal water in the Guanzhong Basin....Combined with tectonic evolution, a multi-isotopic method (δD, δ^18O, ^87Sr/^86Sr and ^14C) and hydrochemistry data have been used to study the origin and classification of geothermal water in the Guanzhong Basin. The study shows that geothermal water of Xianli terrace primarily came from north- west direction when accepting recharge. A small amount supply source of geothermal water in Xi'an City is from Qinling Mountain and the principal supply source comes from the west direction, but geothermal water of Chang'an District mainly accepts supply from Qinling Mountain. Based on geothermal environ- ment is open or not, the degree of water-rock interaction, and the origin of geothermal water, geothermal water of the study area can be divided into four types: A, geothermal water of Gushi depression, perfect closed thermal environment and significant water-rock interaction, belonged to residual sedimentary wa- ter origin; B, geothermal water of Xianyang City, good closed environment and relatively significant water-rock interaction, belonged to residual sedimentary water origin mixed with fossil leaching water; C, geothermal water of Xi'an City, half closed environment and some water-rock interaction, belonged to fossil leaching water origin; D, geothermal water of Chang'an District, open environment and mixed with modern precipitation, belonged to fossil leaching water origin.展开更多
Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is...Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.展开更多
This study aimed to elucidate the influence of inflow water on the salinity concentration process of a saline lake and the mass balance of Lake Issyk-Kul,a tectonic saltwater lake in Kyrgyzstan.Based on the survey res...This study aimed to elucidate the influence of inflow water on the salinity concentration process of a saline lake and the mass balance of Lake Issyk-Kul,a tectonic saltwater lake in Kyrgyzstan.Based on the survey results and meteorological data from 2012 to 2015,we analyzed the dissolved chemical composition loads due to water inflow.Then,we discussed the relationship between the increase in salinity and water inflow into the lake.Through the water quality analysis data,we used the tank model to estimate the river inflow and analyze the loads by the L-Q curve.The groundwater loads were then estimated from the average annual increase in salinity of the lake over a period of 30 a.The results suggest that Lake Issyk-Kul was temporarily freshened between about AD 1500 and 1800 when an outflowing river existed,and thereafter,it became a closed lake in AD 1800 and continued to remain a saline lake until present.The chemical components that cause salinization are supplied from the rivers and groundwater in the catchment area,and when they flow into the lake,Ca^(2+),HCO_(3)−and Mg^(2+)precipitate as CaCO_(3) and MgCO_(3).These compounds were confirmed to have been left on the lakeshore as evaporite.The model analysis showed that 1.67 mg/L of Ca^(2+)and Mg^(2+)supplied from rivers and groundwater are precipitated as evaporite and in other forms per year.On the other hand,salinity continues to remain in the lake water at a rate of 27.5 mg/L per year.These are the main causes of increased salinity in Lake Issyk-Kul.Since Na^(+)and Cl^(-)are considered to be derived from geothermal water,they will continue to flow in regardless of the effects of human activities.Therefore,as long as these components are accumulated in Lake Issyk-Kul as a closed lake,the salinity will continue to increase in the future.展开更多
In the present study, a dual-pressure organic Rankine cycle (DORC) driven by geothermal hot water for electricity production is developed, investigated and optimized from the energy, exergy and exergoeconomic viewpoin...In the present study, a dual-pressure organic Rankine cycle (DORC) driven by geothermal hot water for electricity production is developed, investigated and optimized from the energy, exergy and exergoeconomic viewpoint. A parametric study is conducted to determine the effect of high-stage pressure<span><span><span style="font-family:;" "=""><span></span><span><span> </span>and low-stage pressure</span><span></span><span><span> </span>variation on the system thermodynamic and exergoeconomic performance. The DORC is further optimized to obtain maximum exergy efficiency optimized design (EEOD case) and minimum product cost</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">optimized design (PCOD case). The exergy efficiency and unit cost of power produced for the optimization of EEOD case and PCOD case are 33.03% and 3.059 cent/kWh, which are 0.3% and 17.4% improvement over base case, respectively. The PCOD case proved to be the best, with respect to minimum unit cost of power produced and net power output over the base case and EEOD case.展开更多
The gold orefield studied is located on the south border of the underthrust-collision zone of the Qinling microplate and the North China microplate in the Indosinian epoch. The main ore deposits localized in the area ...The gold orefield studied is located on the south border of the underthrust-collision zone of the Qinling microplate and the North China microplate in the Indosinian epoch. The main ore deposits localized in the area where the WNW-trending compression-shear type fault of the Indosinian epoch intersected the NE-trending tenso-shear type fault of the Yanshanian epoch. The orebody appeared in a chambered or wedged form. The mineral composition is relatively complex. On the southeastern border of the orefield there have developed intermediate-acid anatectic magmatites of the Mesozoic Era. Three-phase inclusions (Lco2, Vco2 and LNaCl-H2O) comprise over 50%, associated with vapor phase consisting of H2O, CO2, CO, CH4, N2 and H2. The ore-forming fluids can be divided into 2 stages (the early and the late). The samples are projected in the area of mixture of initial magmatic and meteoric water on the δD-δ18O diagram, suggesting two types of mineralization, i.e. the re-equilibrated magmatic-hydrothermal type and the circulating geothermal water type of a meteoric water source. The mineralization occurring in this orefield might be a superimposition of 2 tectono-magmatic activities (the Indosinian and Yanshanian movements). Therefore, it is considered a superimposed B-S type gold orefield.展开更多
基金funded by the project of China Geological Survey(Grant No.DD20221677-2)the Central Public-Interest Scientific Institution Basal Research Fund(Grant No.JKYQN202307)。
文摘Geothermal resources are increasingly gaining attention as a competitive,clean energy source to address the energy crisis and mitigate climate change.The Wugongshan area,situated in the southeast coast geothermal belt of China,is a typical geothermal anomaly and contains abundant medium-and low-temperature geothermal resources.This study employed hydrogeochemical and isotopic techniques to explore the cyclic evolution of geothermal water in the western Wugongshan region,encompassing the recharge origin,water-rock interaction mechanisms,and residence time.The results show that the geothermal water in the western region of Wugongshan is weakly alkaline,with low enthalpy and mineralization levels.The hydrochemistry of geothermal waters is dominated by Na-HCO_(3)and Na-SO_(4),while the hydrochemistry types of cold springs are all Na-HCO_(3).The hydrochemistry types of surface waters and rain waters are NaHCO_(3)or Ca-HCO_(3).The δD and δ^(18)O values reveal that the geothermal waters are recharged by atmospheric precipitation at an altitude between 550.0 and 1218.6 m.Molar ratios of maj or solutes and isotopic compositions of^(87)Sr/^(86)Sr underscore the significant role of silicate weathering,dissolution,and cation exchange in controlling geothermal water chemistry.Additionally,geothermal waters experienced varying degrees of mixing with cold water during their ascent.Theδ^(13)C values suggest that the primary sources of carbon in the geothermal waters were biogenic and organic.Theδ^(34)S value suggests that the sulfates in geothermal water originate from sulfide minerals in the surrounding rock.Age dating using 3H and^(14)C isotopes suggests that geothermal waters have a residence time exceeding 1 kaBP and undergo a long-distance cycling process.
文摘The geothermal waters of south hot spring, small hot spring and Qiaokouba in Chongqing, are all part of the south hot spring geothermal water system. Exploitation has caused a decline in the water levels of the south and small hot springs, which have not flowed naturally for 15 years. Now, bores pump geothermal water to the springs. If the water level drops below the elevation of the rivers, river-water will replenish the geothermal water, destroying this resource. It is therefore an urgent task to model the geothermal water system, to enable sustainable development and continued use of the geothermal water in Qiaokouba. A numerical simulation of the geothermal water system was adopted and a quantitative study on the planning scheme was carried out. A mathematical model was set up to simulate the whole geothermal water system, based on data from the research sites. The model determined the maximum sustainable water yield in Qiaokouba and the two hot springs, and the south hot spring and small hot spring sustainable yields are 1 100 m^3/d and 700 m^3/d from 2006 to 2010, 1 300 m^3/d and 1 000 m^3/d from 2011 to 2015, and 1 500 m^3/d and 1 200 m^3/d from 2016 to 2036. The maximum exploitable yield is 3 300 m^3/d from 2006 to 2036 in Qiaokouba. The model supplies a basis to adequately exploit and effectively protect the geothermal water resources, and to continue to develop the geothermal water as a tourist attraction in Chongqing.
基金funded by the Natural Science Foundation of China(Grant Nos.41502220)the Chinese Academy of Geological Sciences Fund(No.YK201611)
文摘Nyemo-Nagqu, Tibet, is rich in high-temperature geothermal resources. The geothermal fields in Yangbajain and Yangyi as well as 11 unexplored geothermal fields along the geothermal belt from Nyemo to Nagqu were systematically investigated and the hydrochemistry data were collected from the whole field. Meanwhile, H-O-C-S isotope data were obtained for the new fields, and H-O isotope data for the Yangbajain and Yangyi fields. A comparison of the Nyemo-Nagqu geothermal fields with those in the Yangbajain area shows that the types of high-temperature geothermal water are dominated by Cl-Na and Cl·HCO3-Na, while the types of medium-high-temperature geothermal water are dominated by HCO3-Na. The concentrations of Li, F, SiO2, and HBO2 in the geothermal water are positively correlated with Cl content, indicating possible mixing with magma water. The reservoir temperatures range from 90 to 270°C by geothermometers. Slight drifting of 18O was recorded at the Dongweng and Nyingzhong high-temperature geothermal fields, while more significant drifting was recorded at Gulu. The geothermal water is mainly replenished by atmospheric precipitation. The low tritium contents(〈1 TU) of the geothermal water from Nyingzhong, Gulu, and Luoma indicate that it is mainly replenished by sub-modern(prior to 1952) water, while the high tritium content(8.4 TU) in Yuela implies modern water replenishment. Other geothermal fields are replenished by a mix of sub-modern fresher water. The isotopic data in this study show that the carbon and sulfur in the geothermal water originates mainly from sediment leaching, with some of the carbon and sulfur having a deep origin.
基金the financial support by the National Natural Science Foundation of China (grant no. 51272107 and 51372118)the Doctor Discipline Special Research Foundation of Chinese Ministry of Education (grant no. 20133219110015)
文摘In this study, the Ag/Ag Cl/WO3 plasmonic Z-scheme photocatalysts with different contents of Ag/Ag Cl nanoparticles(NPs) were prepared through a facile ultrasonic precipitation method in geothermal water,wherein the geothermal water served as the chlorine source. Then the photocatalytic activity was investigated by degradation of 4-Aminobenzoic acid(4-ABA) under visible-light irradiation. It was found that the as-prepared 50 wt% Ag/Ag Cl/WO3 photocatalyst showed the highest photocatalytic efficiency with 25.12 and 3.53 times higher than those of pure WO3 and Ag/Ag Cl, respectively. The active species trapping experiments indicated that h+and ·O2-were key factors in 4-ABA photodegradation process. The possible plasmonic Z-scheme photocatalytic mechanism of photocatalytic reaction for 4-ABA degradation was proposed based on systematical characterizations. We hope this paper could give new ideas for further exploiting geothermal energy to design and fabricate highly efficient visible-light-driven photocatalysts for environmental remediation.
基金financially supported by the National Natural Science Foundation of China (No. 41120124003, 41572335 and 41521001)the research program of China Power Investment Corporation (2015-138-HHS-KJ-X)the research program of State Key Laboratory of Biogeology and Environmental Geology of China
文摘Longling is characterized by a wide distribution of hydrothermal areas, among which the Banglazhang hydrothermal system is the most geothermally active. Banglazhang is marked by intensive hydrothermal activities including hot springs, geysers, fumaroles and hydrothermal explosions. The geothermal waters from the Longling region are mainly HCO3-Na type with low but comparable SO4 and Cl concentrations. Calculations based on a variety of chemical geothermometers and a K-Ca geobarometer indicate that the Banglazhang hydrothermal system has much higher subsurface temperature and CO2 pressure compared to the other systems such as Daheba, Dazhulin and Huangcaoba. However, geothermal water samples collected from all these alternative hydrothermal areas are either partially equilibrated with reservoir minerals or are immature. The silica-enthalpy relationships of Banglazhang geothermal waters indicate the presence of a deep geothermal fluid with an enthalpy value and silica concentration of 945 J/g(up to around 220 °C) and 339 mg/L. Our work indicates the Banglazhang area is a promising source in terms of long-term utilization of hydrothermal resources.
文摘On the basis of discussion about hydro-geologic condition of geothermal water in Xiaoquan area, Chongqing, a three-dimensional mathematical model was established. The Modflow(a modular three-dimensional finite-difference groundwater model) software was adopted to simulate the geothermal water, and quantificational study on sustainable exploration of the geothermal water in Xiaoquan area was carried out. Firstly, a mathe- matical model was set up. Then, the geothermal water was simulated by Modflow software, and the mathematical model was identified. The simulative water level was compared with the actual water level and the mathematical model was calibrated. The feasibility of appli- cation of this mathematical model to studying underground geothermal water was proved that the simulative water level is approximated to actual one, and a right mathematical model was obtained. This mathematical model was used to simulate geothermal water under different exploitation conditions, at last the yields of sustainable exploitation includ- ing the maximum yield and the optimal yield were determined.
文摘To study the mechanism of bio-clogging in a porous medium during the reinjection of geothermal water and to improve reinjection efficiency, an indoor one-dimensional reinjection experiment was conducted based on the geological model of the geothermal reinjection demonstration project in Dezhou City. The biological process of porous media clogging was investigated by analyzing the variation of permeability within the medium, the main indexes of nutrient salts, and the content of extracellular polymeric substances (EPS). High-throughput sequencing, based on 16S rRNA, was used to analyze the characteristics and succession of microbial communities during the reinjection of geothermal water. The results of the study show that significant bio-clogging occurs during the reinjection of geothermal water, with an increase in the heterogeneity of the thermal reservoir medium, and a decrease in permeability. The extent of clogging gradually reduces with an increase in seepage path. Thus, thermal reservoir clogging is more serious closer to the water inlet. With an increase in the duration of reinjection, the permeability of the porous medium undergoes three stages: “rapid”, “decline-slow”, and “decrease-stable”. The results show that the richness and diversity of the bacterial community increase and decrease, respectively, during the reinjection process. Bacterial community succession occurs, and the bacterial communities mainly include the Proteobacteria and Bacteroidetes phyla. <em>Pseudomonas</em> and <em>Devosia</em> are respectively the dominant bacteria in the early and late stages of geothermal water reinjection.
基金financially supported by the China Geological Survey(Nos.DD20190822 and DD20190536)the Key Research Program of Hebei Science and Technology Department(No.19224205D)。
文摘Study on the Nuanquanzi geothermal field in the Yanshan uplift is of great significance for understanding the origin of geothermal fluid in the intracontinental orogenic belt of the fault depression basin margin in North China.The geochemical characteristics and formation mechanism of the Nuanquanzi geothermal system were elucidated by classical hydrogeochemical analysis,multi-isotopes approach(δD,δ^(18)O,δ^(13)C,δ^(87)Sr/^(86)Sr),14CAMSdating,and integrated geophysical prospecting of surface-soil radon gas measurement and CSAMT inversion.The results show that the Nuanquanzi geothermal field is a medium-low temperature convection-fault semi-enclosed geothermal system.The hydrochemical type of thermal water is primarily HCO_(3)-Na,and rich in soluble SiO_(2),F^(-)and Cl^(-).The geothermal water primarily originated from the recharging meteoric water with a maximum circulation depth of 2400-3200 m,but affected by the mixing of endogenous sedimentary water.The reservoir temperature calculated by Na-K and quartz geothermometer of the Nuanquanzi geothermal system was determined to be 73.39-92.87℃.The conduction-cooling and shallow cold-water mixing processes occurred during the parent geothermal fluid ascent to surface,and the proportion of cold-water mixing during circulation was approximately 88.3%to 92.2%.The high-anomaly radon zones matched well to the low apparentresistance areas and hiding faults,indicating that the Nuanquanzi geothermal field was dominated by a graben basin restricted by multiple faults.
基金funded by the Second Comprehensive Scientific Investigation Project of Qinghai-Tibet Plateau(No.2019QZKK0603)the National Natural Science Foundation of China(No.22066022)+2 种基金Science and Technology Plan Projects of Tibet Autonomous Region(No.ZYYD2022000255)Key Projects of“Science and Technology Help Economy 2020”(No.SQ2020YFF0423891)Key Projects of Solid Waste Recycling(No.2019YFC1904103-04)。
文摘High residual concentration of arsenic and fluoride is a tricky problem to be solved in the process of reinjection after geothermal water utilization.We develop a method to simultaneously remove As(V)and F-from geothermal water using magnetic Fe_(3)O_(4)@MgO adsorbent,fabricated via a one-step method.The effects of pH,contact time,adsorbent dose and temperature on the removal efficiency were investigated systematically.The results show that the Fe_(3)O_(4)@MgO composite has a wide range of pH(2-11),ultrafast removal dynamics(As(V):2 min;F-:30 min),and high removal efficiency(As(V):99.9%;F-:96.6%).The adsorption kinetics follows the pseudo-secondorder kinetics model,and the adsorption isotherm model fits Freundlich.The adsorption capacity of As(V)and F-can reach 123 and 98.4 mg/g,respectively.The exchange of As(V)and F-with Mg-hydroxyl groups hydrolysis by MgO was determined the adsorption mechanism.The Fe_(3)O_(4)@MgO adsorbent was capable of achieving the adsorption efficiency as high as 99.9%for As(V)and 97.3%for F-in real geothermal water,respectively.Hence,the proposed Fe_(3)O_(4)@MgO composite exhibited as an excellent adsorbent for the remediation of As-and F-contaminated geothermal water.
基金supported by the Research Project on Middle and Deep Geothermal Energy Utilization in Guanzhong Area of Shaanxi ProvincedSpecial Study on Sandstone Thermal Storage Recharge(No.21152920349)the Special Fund for Basic Scientific Research Operating Expenses of Central Universities of Chang'an University(Grant No.300102292903)+1 种基金the Basic Research Plan of Natural Sciences of Shaanxi Province General Project“Study on Loess Landslide Chronology Based on OSL Dating Technology”(Grant No.2017JM4018)the Open Fund of State Key Laboratory of Loess and Quaternary Geology(Grant No.SKLLQG1933).
文摘The Xi'an Depression in the Guanzhong Basin of western China has been suggested to contain geothermal resources that could aid China in achieving carbon neutrality and optimizing energy structure.However,the high concentration of total dissolved solids(TDS)and scale-forming ions in geothermal water from the depression causes severe scaling problems in harvesting geothermal energy.To reduce scale-related problems,accurate identification of scale types and prediction of scaling during geothermal energy utilization are crucial.This study starts with identifying the types and trends of scaling in the study area,using index-based discriminant methods and hydrogeochemical simulation to calculate and analyze the mineral saturation index of water samples from some wellheads and of reconstructed fluid samples of geothermal reservoirs.The results indicate that the scales are mostly calcium carbonate scales rather than sulfate scales as a result of temperature changes.Several portions of the geothermal water systems are found to have distinct mineral scaling components.Quartz and chalcedony are formed in low temperature areas,while carbonate minerals are in high temperature areas.Despite the low iron content of geothermal water samples from the study area,scaling is very common due to scaling-prone iron minerals.The findings can be used to evaluate geothermal drainage systems and guide anti-scaling during geothermal energy utilization in similar settings.
文摘Water scarcity in arid regions poses significant challenges to sustainable development and human well-being. This article explores both existing and innovative technologies and methods to produce large amounts of water to address these challenges effectively. Key approaches include atmospheric water generation, advanced desalination techniques, innovative water collection methods such as fog nets and dew harvesting, geothermal water extraction, and water recycling and reuse. Each method is evaluated for its feasibility with existing technology, potential time of implementation, required investments, and specific challenges. By leveraging these technologies and combining them into a multifaceted water management strategy, it is possible to enhance water security, support agricultural and industrial activities, and improve living conditions in arid regions. Collaborative efforts between governments, private sector entities, and research institutions are crucial to advancing these technologies and ensuring their sustainable implementation. The article provides a comprehensive overview of the current state of these technologies, their potential for large-scale application, and recommendations for future research and development.
基金supported by the National Basic Research Program of China(No.2010CB428806)Beijing Municipal Science and Technology Project(No.D07050601510000)
文摘Statistical study of analyses of water from 43 samples from geothermal wells, three groundwater wells, and one sample of local rainwater along with rainwater data from the Global Net- work of Isotopes in Precipitation has been used to identify the origin and evolution of geothermal water in the Niutuozhen (~f=~jg) geothermal field and estimate the renewability rate of its geothermal re- source. The results show that the geothermal waters of the Jixianian Wumishanian dolomite reservoir and the Ordovician limestone reservoir are of CI-Na type, the geothermal water of the Pliocene Minghuazben (H~/~) Formation sandstone reservoir are CI-Na type and HCO3-Na type and the groundwater of the Quaternary aquifer is HCO3-Na and HCO3-Na.Mg.Ca type. A linear relationship between silica concentration and temperature indicates that higher temperature probably enhances concentration of silica in Jixianian geothermal water. 81SO shift in Wumishanian geothermal water av- eraged 1.57%o, and was less than 1%o in the other geothermal waters. The minimum and maxi-mum 14C ages of Wumishanian geothermal wa- ter are 17 000 and 33 000 years from north to the south of the Niutuozhen geothermal field. Geo- thermal water and Quaternary groundwater belong to different groundwater systems with no hydraulic connections. Although the geothermal field receives some recharge from the Yanshan and Taihang mountains outside the northern and western boundaries of the geothermal field re- spectively, the renewability rate of geothermal water is on the scale of 10 000 years.
基金supported by National Natural Science Foundation of China(Grant Nos.41203012,41030317)China Geological Survey(Grant No.1212011085524)
文摘Boron concentrations and isotope compositions have been measured for 93 water samples from the hot springs and drill-holes in the geothermal system in the Yunnan-Tibet Geothermal Belt(YTGB),China.Boron concentrations range from 0.036–472.4ppm,and theδ11B values range from -16.0‰to 13.1‰,indicating the non-marine origin for each geothermal system.We observed a clear binary mixing relationship between the B concentrations and B isotope compositions in Tibet geothermal area.This relationship can be well explained by two sources,i.e.,marine carbonate rocks and magmatic rocks,for the Tibet geothermal water.No evidence supports a mantle contribution to B.In addition,we found that the precipitation only plays a dilution role for B of geothermal waters.δ11B values for the precipitation across the southern Tibetan Plateau area range from -6.0‰ to -6.8‰at least.Due to data scarcity in Yunnan geothermal area,we observed possible different boron sources from the Tibet geothermal system.Comparing it with other geothermal systems in the world,we found that the samples from YTGB have the lowestδ11B values and the largest range of B concentration,which might be related to their special geological background.On the whole,the world geothermalδ11B-Cl/B relation suggests a mixing process between marine and non-marine sources.Additionally,we suggest that B source of B-enriched geothermal waters is mainly from B-enriched crustal country-rocks,instead of mantle.
基金Project supported by the Apllied and Fundamental Foundation of Chongqing (Grant No: 8020) and the Natural Science Foundation of Chongqing (Grant No: cstc2004BB7059)
文摘The Nanwenquan (South Hot Spring) and Xiao quan (Small Hot Spring) in the Nanwenquan anticline are well-known attraction for their geothermal water, but currently, the two natural hot springs have hot flow naturally. In order to protect the geothermal water resource, the evolution of hydrodynamic field must be researched for the causation of the hydrodynamic field destroyed. The finite element numerical simulation was adopted and quantitative study on the geothermal water hydrodynamic field. The finite element model was set up to simulate the research sites, the simulated water level was compared with the actual water level, the feasibility of this model was proved when the simulated water level is approximate to actual one, and an applicable finite element model was obtained. The finite element model was used to simulate the evolution of the hydrodynamic field. This paper supplies a basis to exploit adequately and protect effectively the geothermal water resource, at the same time it is proved feasible in practice to apply finite element numerical simulation to quantitative study of the geothermal water.
基金financially supported by the National Natural Science Foundation of China(No.41172211)
文摘Combined with tectonic evolution, a multi-isotopic method (δD, δ^18O, ^87Sr/^86Sr and ^14C) and hydrochemistry data have been used to study the origin and classification of geothermal water in the Guanzhong Basin. The study shows that geothermal water of Xianli terrace primarily came from north- west direction when accepting recharge. A small amount supply source of geothermal water in Xi'an City is from Qinling Mountain and the principal supply source comes from the west direction, but geothermal water of Chang'an District mainly accepts supply from Qinling Mountain. Based on geothermal environ- ment is open or not, the degree of water-rock interaction, and the origin of geothermal water, geothermal water of the study area can be divided into four types: A, geothermal water of Gushi depression, perfect closed thermal environment and significant water-rock interaction, belonged to residual sedimentary wa- ter origin; B, geothermal water of Xianyang City, good closed environment and relatively significant water-rock interaction, belonged to residual sedimentary water origin mixed with fossil leaching water; C, geothermal water of Xi'an City, half closed environment and some water-rock interaction, belonged to fossil leaching water origin; D, geothermal water of Chang'an District, open environment and mixed with modern precipitation, belonged to fossil leaching water origin.
基金supported by the Carbon Peak and Carbon Neutralization Science and Technology Innovation Special Fund of Jiangsu Province,China(No.BE2022859)Natural Science Foundation of Guangdong Province,China(No.2021A1515011763).
文摘Process heating constitutes a significant share of final energy consumption in the industrial sector around the world.In this paper,a high-temperature heat pump(HTHP)using flash tank vapor injection technology(FTVI)is proposed to develop low-temperature geothermal source for industrial process heating with temperature above 100°C.With heat sink output temperatures between 120°C and 150°C,the thermo-economic performance of the FTVI HTHP system using R1234ze(Z)as refrigerant is analyzed and also compared to the single-stage vapor compression(SSVC)system by employing the developed mathematical model.The coefficient of performance(COP),exergy efficiency(ηexe),net present value(NPV)and payback period(PBP)are used as performance indicators.The results show that under the typical working conditions,the COP andηexe of FTVI HTHP system are 3.00 and 59.66%,respectively,and the corresponding NPV and PBP reach 8.13×106 CNY and 4.13 years,respectively.Under the high-temperature heating conditions,the thermo-economic performance of the FTVI HTHP system is significantly better than that of the SSVC system,and the larger the temperature lift,the greater the thermo-economic advantage of the FTVI HTHP system.Additionally,the FTVI HTHP system is more capable than the SSVC system in absorbing the financial risks associated with changes of electricity price and natural gas price.
基金This study was supported in part by a research grant from the Graduate School of Humanities,Hosei University and Japan Society for the Promotion of Science(JSPS,JP21K13150).
文摘This study aimed to elucidate the influence of inflow water on the salinity concentration process of a saline lake and the mass balance of Lake Issyk-Kul,a tectonic saltwater lake in Kyrgyzstan.Based on the survey results and meteorological data from 2012 to 2015,we analyzed the dissolved chemical composition loads due to water inflow.Then,we discussed the relationship between the increase in salinity and water inflow into the lake.Through the water quality analysis data,we used the tank model to estimate the river inflow and analyze the loads by the L-Q curve.The groundwater loads were then estimated from the average annual increase in salinity of the lake over a period of 30 a.The results suggest that Lake Issyk-Kul was temporarily freshened between about AD 1500 and 1800 when an outflowing river existed,and thereafter,it became a closed lake in AD 1800 and continued to remain a saline lake until present.The chemical components that cause salinization are supplied from the rivers and groundwater in the catchment area,and when they flow into the lake,Ca^(2+),HCO_(3)−and Mg^(2+)precipitate as CaCO_(3) and MgCO_(3).These compounds were confirmed to have been left on the lakeshore as evaporite.The model analysis showed that 1.67 mg/L of Ca^(2+)and Mg^(2+)supplied from rivers and groundwater are precipitated as evaporite and in other forms per year.On the other hand,salinity continues to remain in the lake water at a rate of 27.5 mg/L per year.These are the main causes of increased salinity in Lake Issyk-Kul.Since Na^(+)and Cl^(-)are considered to be derived from geothermal water,they will continue to flow in regardless of the effects of human activities.Therefore,as long as these components are accumulated in Lake Issyk-Kul as a closed lake,the salinity will continue to increase in the future.
文摘In the present study, a dual-pressure organic Rankine cycle (DORC) driven by geothermal hot water for electricity production is developed, investigated and optimized from the energy, exergy and exergoeconomic viewpoint. A parametric study is conducted to determine the effect of high-stage pressure<span><span><span style="font-family:;" "=""><span></span><span><span> </span>and low-stage pressure</span><span></span><span><span> </span>variation on the system thermodynamic and exergoeconomic performance. The DORC is further optimized to obtain maximum exergy efficiency optimized design (EEOD case) and minimum product cost</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">optimized design (PCOD case). The exergy efficiency and unit cost of power produced for the optimization of EEOD case and PCOD case are 33.03% and 3.059 cent/kWh, which are 0.3% and 17.4% improvement over base case, respectively. The PCOD case proved to be the best, with respect to minimum unit cost of power produced and net power output over the base case and EEOD case.
文摘The gold orefield studied is located on the south border of the underthrust-collision zone of the Qinling microplate and the North China microplate in the Indosinian epoch. The main ore deposits localized in the area where the WNW-trending compression-shear type fault of the Indosinian epoch intersected the NE-trending tenso-shear type fault of the Yanshanian epoch. The orebody appeared in a chambered or wedged form. The mineral composition is relatively complex. On the southeastern border of the orefield there have developed intermediate-acid anatectic magmatites of the Mesozoic Era. Three-phase inclusions (Lco2, Vco2 and LNaCl-H2O) comprise over 50%, associated with vapor phase consisting of H2O, CO2, CO, CH4, N2 and H2. The ore-forming fluids can be divided into 2 stages (the early and the late). The samples are projected in the area of mixture of initial magmatic and meteoric water on the δD-δ18O diagram, suggesting two types of mineralization, i.e. the re-equilibrated magmatic-hydrothermal type and the circulating geothermal water type of a meteoric water source. The mineralization occurring in this orefield might be a superimposition of 2 tectono-magmatic activities (the Indosinian and Yanshanian movements). Therefore, it is considered a superimposed B-S type gold orefield.