Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, f...Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.展开更多
This paper presented a novel tinny motion capture system for measuring bird posture based on inertial and magnetic measurement units that are made up of micromachined gyroscopes, accelerometers, and magnetometers. Mul...This paper presented a novel tinny motion capture system for measuring bird posture based on inertial and magnetic measurement units that are made up of micromachined gyroscopes, accelerometers, and magnetometers. Multiple quaternion-based extended Kalman filters were implemented to estimate the absolute orientations to achieve high accuracy.Under the guidance of ornithology experts, the extending/contracting motions and flapping cycles were recorded using the developed motion capture system, and the orientation of each bone was also analyzed. The captured flapping gesture of the Falco peregrinus is crucial to the motion database of raptors as well as the bionic design.展开更多
Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data...Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data,failing to meet the demands of various scenarios. Furthermore, multi-modal approaches lack the versatility toefficiently process both uniformand disparate input patterns.Thus, in this paper, an attention-enhanced pseudo-3Dresidual model is proposed to address the GAR problem, called HgaNets. This model comprises two independentcomponents designed formodeling visual RGB (red, green and blue) images and 3Dskeletal heatmaps, respectively.More specifically, each component consists of two main parts: 1) a multi-dimensional attention module forcapturing important spatial, temporal and feature information in human gestures;2) a spatiotemporal convolutionmodule that utilizes pseudo-3D residual convolution to characterize spatiotemporal features of gestures. Then,the output weights of the two components are fused to generate the recognition results. Finally, we conductedexperiments on four datasets to assess the efficiency of the proposed model. The results show that the accuracy onfour datasets reaches 85.40%, 91.91%, 94.70%, and 95.30%, respectively, as well as the inference time is 0.54 s andthe parameters is 2.74M. These findings highlight that the proposed model outperforms other existing approachesin terms of recognition accuracy.展开更多
Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar...Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar has attracted growing attention for its characteristics of contact-free,privacy-preserving and less environmentdependence.Although there have been many recent studies on hand gesture recognition,the existing hand gesture recognition methods still have recognition accuracy and generalization ability shortcomings in shortrange applications.In this paper,we present a hand gesture recognition method named multiscale feature fusion(MSFF)to accurately identify micro hand gestures.In MSFF,not only the overall action recognition of the palm but also the subtle movements of the fingers are taken into account.Specifically,we adopt hand gesture multiangle Doppler-time and gesture trajectory range-angle map multi-feature fusion to comprehensively extract hand gesture features and fuse high-level deep neural networks to make it pay more attention to subtle finger movements.We evaluate the proposed method using data collected from 10 users and our proposed solution achieves an average recognition accuracy of 99.7%.Extensive experiments on a public mmWave gesture dataset demonstrate the superior effectiveness of the proposed system.展开更多
Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio...Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.展开更多
Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based ...Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.展开更多
In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and...In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and cameras,often caused by environmental factors.This issue has spurred the need for advanced data processing methods to achieve more accurate gesture recognition and predictions.Our study presents a novel virtual keyboard allowing character input via distinct hand gestures,focusing on two key aspects:hand gesture recognition and character input mechanisms.We developed a novel model with LSTM and fully connected layers for enhanced sequential data processing and hand gesture recognition.We also integrated CNN,max-pooling,and dropout layers for improved spatial feature extraction.This model architecture processes both temporal and spatial aspects of hand gestures,using LSTM to extract complex patterns from frame sequences for a comprehensive understanding of input data.Our unique dataset,essential for training the model,includes 1,662 landmarks from dynamic hand gestures,33 postures,and 468 face landmarks,all captured in real-time using advanced pose estimation.The model demonstrated high accuracy,achieving 98.52%in hand gesture recognition and over 97%in character input across different scenarios.Its excellent performance in real-time testing underlines its practicality and effectiveness,marking a significant advancement in enhancing human-device interactions in the digital age.展开更多
With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors we...With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.展开更多
With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive use...With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive user experience that does not require physical contact and is becoming increasingly prevalent across various fields. Gesture recognition systems based on Frequency Modulated Continuous Wave (FMCW) millimeter-wave radar are receiving widespread attention due to their ability to operate without wearable sensors, their robustness to environmental factors, and the excellent penetrative ability of radar signals. This paper first reviews the current main gesture recognition applications. Subsequently, we introduce the system of gesture recognition based on FMCW radar and provide a general framework for gesture recognition, including gesture data acquisition, data preprocessing, and classification methods. We then discuss typical applications of gesture recognition systems and summarize the performance of these systems in terms of experimental environment, signal acquisition, signal processing, and classification methods. Specifically, we focus our study on four typical gesture recognition systems, including air-writing recognition, gesture command recognition, sign language recognition, and text input recognition. Finally, this paper addresses the challenges and unresolved problems in FMCW radar-based gesture recognition and provides insights into potential future research directions.展开更多
Generating co-speech gestures for interactive digital humans remains challenging because of the indeterministic nature of the problem.The authors observe that gestures generated from speech audio or text by existing n...Generating co-speech gestures for interactive digital humans remains challenging because of the indeterministic nature of the problem.The authors observe that gestures generated from speech audio or text by existing neural methods often contain less movement shift than expected,which can be viewed as slow or dull.Thus,a new generative model coupled with memory networks as dynamic dictionaries for speech-driven gesture generation with improved diversity is proposed.More specifically,the dictionary network dynamically stores connections between text and pose features in a list of key-value pairs as the memory for the pose generation network to look up;the pose generation network then merges the matching pose features and input audio features for generating the final pose sequences.To make the improvements more accurately measurable,a new objective evaluation metric for gesture diversity that can remove the influence of low-quality motions is also proposed and tested.Quantitative and qualitative experiments demonstrate that the proposed architecture succeeds in generating gestures with improved diversity.展开更多
Gesture detection is the primary and most significant step for sign language detection and sign language is the communication medium for people with speaking and hearing disabilities. This paper presents a novel metho...Gesture detection is the primary and most significant step for sign language detection and sign language is the communication medium for people with speaking and hearing disabilities. This paper presents a novel method for dynamic hand gesture detection using Hidden Markov Models (HMMs) where we detect different English alphabet letters by tracing hand movements. The process involves skin color-based segmentation for hand isolation in video frames, followed by morphological operations to enhance image trajectories. Our system employs hand tracking and trajectory smoothing techniques, such as the Kalman filter, to monitor hand movements and refine gesture paths. Quantized sequences are then analyzed using the Baum-Welch Re-estimation Algorithm, an HMM-based approach. A maximum likelihood classifier is used to identify the most probable letter from the test sequences. Our method demonstrates significant improvements over traditional recognition techniques in real-time, automatic hand gesture recognition, particularly in its ability to distinguish complex gestures. The experimental results confirm the effectiveness of our approach in enhancing gesture-based sign language detection to alleviate the barrier between the deaf and hard-of-hearing community and general people.展开更多
Holograms provide a characteristic manner to display and convey information, and have been improved to provide better user interactions Holographic interactions are important as they improve user interactions with vir...Holograms provide a characteristic manner to display and convey information, and have been improved to provide better user interactions Holographic interactions are important as they improve user interactions with virtual objects. Gesture interaction is a recent research topic, as it allows users to use their bare hands to directly interact with the hologram. However, it remains unclear whether real hand gestures are well suited for hologram applications. Therefore, we discuss the development process and implementation of three-dimensional object manipulation using natural hand gestures in a hologram. We describe the design and development process for hologram applications and its integration with real hand gesture interactions as initial findings. Experimental results from Nasa TLX form are discussed. Based on the findings, we actualize the user interactions in the hologram.展开更多
Machine learning is a technique for analyzing data that aids the construction of mathematical models.Because of the growth of the Internet of Things(IoT)and wearable sensor devices,gesture interfaces are becoming a mo...Machine learning is a technique for analyzing data that aids the construction of mathematical models.Because of the growth of the Internet of Things(IoT)and wearable sensor devices,gesture interfaces are becoming a more natural and expedient human-machine interaction method.This type of artificial intelligence that requires minimal or no direct human intervention in decision-making is predicated on the ability of intelligent systems to self-train and detect patterns.The rise of touch-free applications and the number of deaf people have increased the significance of hand gesture recognition.Potential applications of hand gesture recognition research span from online gaming to surgical robotics.The location of the hands,the alignment of the fingers,and the hand-to-body posture are the fundamental components of hierarchical emotions in gestures.Linguistic gestures may be difficult to distinguish from nonsensical motions in the field of gesture recognition.Linguistic gestures may be difficult to distinguish from nonsensical motions in the field of gesture recognition.In this scenario,it may be difficult to overcome segmentation uncertainty caused by accidental hand motions or trembling.When a user performs the same dynamic gesture,the hand shapes and speeds of each user,as well as those often generated by the same user,vary.A machine-learning-based Gesture Recognition Framework(ML-GRF)for recognizing the beginning and end of a gesture sequence in a continuous stream of data is suggested to solve the problem of distinguishing between meaningful dynamic gestures and scattered generation.We have recommended using a similarity matching-based gesture classification approach to reduce the overall computing cost associated with identifying actions,and we have shown how an efficient feature extraction method can be used to reduce the thousands of single gesture information to four binary digit gesture codes.The findings from the simulation support the accuracy,precision,gesture recognition,sensitivity,and efficiency rates.The Machine Learning-based Gesture Recognition Framework(ML-GRF)had an accuracy rate of 98.97%,a precision rate of 97.65%,a gesture recognition rate of 98.04%,a sensitivity rate of 96.99%,and an efficiency rate of 95.12%.展开更多
With the development of virtual reality(VR)and human-computer interaction technology,how to use natural and efficient interaction methods in the virtual environment has become a hot topic of research.Gesture is one of...With the development of virtual reality(VR)and human-computer interaction technology,how to use natural and efficient interaction methods in the virtual environment has become a hot topic of research.Gesture is one of the most important communication methods of human beings,which can effectively express users'demands.In the past few decades,gesture-based interaction has made significant progress.This article focuses on the gesture interaction technology and discusses the definition and classification of gestures,input devices for gesture interaction,and gesture interaction recognition technology.The application of gesture interaction technology in virtual reality is studied,the existing problems in the current gesture interaction are summarized,and the future development is prospected.展开更多
In the majority of the interaction process, the operator often focuses on the tracked 3D hand gesture model at the "interaction points" in the collision detectionscene, such as "grasp" and "release" and objects ...In the majority of the interaction process, the operator often focuses on the tracked 3D hand gesture model at the "interaction points" in the collision detectionscene, such as "grasp" and "release" and objects in the scene, without paying attention to the tracked 3D hand gesture model in the total procedure. Thus in this paper, a visual attention distribution model of operator in the "grasp", "translation", "release" and other basic operation procedures is first studied and a 3D hand gesture tracking algorithm based on this distribution model is proposed. Utilizing the algorithm, in the period with a low degree of visual attention, a pre-stored 3D hand gesture animation can be used to directly visualise a 3D hand gesture model in the interactive scene; in the time period with a high degree of visual attention, an existing "frame-by-frame tracking" approach can be adopted to obtain a 3D gesture model. The results demonstrate that the proposed method can achieve real-time tracking of 3D hand gestures with an effective improvement on the efficiency, fluency, and availability of 3D hand gesture interaction.展开更多
Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsens...Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsensors for the smart home application. Developing such a model facilitatesthe medical health field (elders or disabled ones). Home automation has alsobeen proven to be a tremendous benefit for the elderly and disabled. Residentsare admitted to smart homes for comfort, luxury, improved quality of life,and protection against intrusion and burglars. This paper proposes a novelsystem that uses principal component analysis, linear discrimination analysisfeature extraction, and random forest as a classifier to improveHGRaccuracy.We have achieved an accuracy of 94% over the publicly benchmarked HGRdataset. The proposed system can be used to detect hand gestures in thehealthcare industry as well as in the industrial and educational sectors.展开更多
Gesture recognition is an important research in the field of human-computer interaction. Hand Gestures are strong variable and flexible, so the gesture recognition has always been an important challenge for the resear...Gesture recognition is an important research in the field of human-computer interaction. Hand Gestures are strong variable and flexible, so the gesture recognition has always been an important challenge for the researchers. In this paper, we first outlined the development of gestures recognition, and different classification of gestures based on different purposes. Then we respectively introduced common methods used in the process of gesture segmentation, feature extraction and recognition. Finally, the gesture recognition was summarized and the studying prospects were given.展开更多
Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped ...Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator(FST-TENG)based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer.Owing to the great robustness and continuous conductivity,the FST-TENGs demonstrate high stability,stretchability,and even tailorability.For a single device with ~6 cm in length and ~3 mm in diameter,the open-circuit voltage of ~59.7 V,transferred charge of ~23.7 nC,short-circuit current of ~2.67 μA and average power of ~2.13 μW can be obtained at 2.5 Hz.By knitting several FST-TENGs to be a fabric or a bracelet,it enables to harvest human motion energy and then to drive a wearable electronic device.Finally,it can also be woven on dorsum of glove to monitor the movements of gesture,which can recognize every single finger,different bending angle,and numbers of bent finger by analyzing voltage signals.展开更多
Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning netwo...Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning network for hand gesture recognition.The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation.To learn short-term features,each video input is segmented into a fixed number of frame groups.A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot.These two entities are fused and fed into a convolutional neural network(Conv Net)for feature extraction.The Conv Nets for all groups share parameters.To learn longterm features,outputs from all Conv Nets are fed into a long short-term memory(LSTM)network,by which a final classification result is predicted.The new model has been tested with two popular hand gesture datasets,namely the Jester dataset and Nvidia dataset.Comparing with other models,our model produced very competitive results.The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures.展开更多
In human-machine interaction,robotic hands are useful in many scenarios.To operate robotic hands via gestures instead of handles will greatly improve the convenience and intuition of human-machine interaction.Here,we ...In human-machine interaction,robotic hands are useful in many scenarios.To operate robotic hands via gestures instead of handles will greatly improve the convenience and intuition of human-machine interaction.Here,we present a magnetic array assisted sliding triboelectric sensor for achieving a real-time gesture interaction between a human hand and robotic hand.With a finger’s traction movement of flexion or extension,the sensor can induce positive/negative pulse signals.Through counting the pulses in unit time,the degree,speed,and direction of finger motion can be judged in realtime.The magnetic array plays an important role in generating the quantifiable pulses.The designed two parts of magnetic array can transform sliding motion into contact-separation and constrain the sliding pathway,respectively,thus improve the durability,low speed signal amplitude,and stability of the system.This direct quantization approach and optimization of wearable gesture sensor provide a new strategy for achieving a natural,intuitive,and real-time human-robotic interaction.展开更多
基金the Competitive Research Fund of the University of Aizu,Japan.
文摘Person identification is one of the most vital tasks for network security. People are more concerned about theirsecurity due to traditional passwords becoming weaker or leaking in various attacks. In recent decades, fingerprintsand faces have been widely used for person identification, which has the risk of information leakage as a resultof reproducing fingers or faces by taking a snapshot. Recently, people have focused on creating an identifiablepattern, which will not be reproducible falsely by capturing psychological and behavioral information of a personusing vision and sensor-based techniques. In existing studies, most of the researchers used very complex patternsin this direction, which need special training and attention to remember the patterns and failed to capturethe psychological and behavioral information of a person properly. To overcome these problems, this researchdevised a novel dynamic hand gesture-based person identification system using a Leap Motion sensor. Thisstudy developed two hand gesture-based pattern datasets for performing the experiments, which contained morethan 500 samples, collected from 25 subjects. Various static and dynamic features were extracted from the handgeometry. Randomforest was used to measure feature importance using the Gini Index. Finally, the support vectormachinewas implemented for person identification and evaluate its performance using identification accuracy. Theexperimental results showed that the proposed system produced an identification accuracy of 99.8% for arbitraryhand gesture-based patterns and 99.6% for the same dynamic hand gesture-based patterns. This result indicatedthat the proposed system can be used for person identification in the field of security.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52175279 and 51705459)the Natural Science Foundation of Zhejiang Province,China (Grant No.LY20E050022)the Key Research and Development Projects of Zhejiang Provincial Science and Technology Department (Grant No.2021C03122)。
文摘This paper presented a novel tinny motion capture system for measuring bird posture based on inertial and magnetic measurement units that are made up of micromachined gyroscopes, accelerometers, and magnetometers. Multiple quaternion-based extended Kalman filters were implemented to estimate the absolute orientations to achieve high accuracy.Under the guidance of ornithology experts, the extending/contracting motions and flapping cycles were recorded using the developed motion capture system, and the orientation of each bone was also analyzed. The captured flapping gesture of the Falco peregrinus is crucial to the motion database of raptors as well as the bionic design.
基金the National Natural Science Foundation of China under Grant No.62072255.
文摘Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data,failing to meet the demands of various scenarios. Furthermore, multi-modal approaches lack the versatility toefficiently process both uniformand disparate input patterns.Thus, in this paper, an attention-enhanced pseudo-3Dresidual model is proposed to address the GAR problem, called HgaNets. This model comprises two independentcomponents designed formodeling visual RGB (red, green and blue) images and 3Dskeletal heatmaps, respectively.More specifically, each component consists of two main parts: 1) a multi-dimensional attention module forcapturing important spatial, temporal and feature information in human gestures;2) a spatiotemporal convolutionmodule that utilizes pseudo-3D residual convolution to characterize spatiotemporal features of gestures. Then,the output weights of the two components are fused to generate the recognition results. Finally, we conductedexperiments on four datasets to assess the efficiency of the proposed model. The results show that the accuracy onfour datasets reaches 85.40%, 91.91%, 94.70%, and 95.30%, respectively, as well as the inference time is 0.54 s andthe parameters is 2.74M. These findings highlight that the proposed model outperforms other existing approachesin terms of recognition accuracy.
基金supported by the National Natural Science Foundation of China under grant no.62272242.
文摘Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar has attracted growing attention for its characteristics of contact-free,privacy-preserving and less environmentdependence.Although there have been many recent studies on hand gesture recognition,the existing hand gesture recognition methods still have recognition accuracy and generalization ability shortcomings in shortrange applications.In this paper,we present a hand gesture recognition method named multiscale feature fusion(MSFF)to accurately identify micro hand gestures.In MSFF,not only the overall action recognition of the palm but also the subtle movements of the fingers are taken into account.Specifically,we adopt hand gesture multiangle Doppler-time and gesture trajectory range-angle map multi-feature fusion to comprehensively extract hand gesture features and fuse high-level deep neural networks to make it pay more attention to subtle finger movements.We evaluate the proposed method using data collected from 10 users and our proposed solution achieves an average recognition accuracy of 99.7%.Extensive experiments on a public mmWave gesture dataset demonstrate the superior effectiveness of the proposed system.
基金supported by the National Natural Science Foundation of China(No.12172076)。
文摘Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems.
基金National Innovation and Entrepreneurship Program for College Students(202218213001)Science and Technology Innovation Strategy of Guangdong Province(Science and Technology Innovation Cultivation of University Students 2020329182130C000002).
文摘Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.
文摘In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and cameras,often caused by environmental factors.This issue has spurred the need for advanced data processing methods to achieve more accurate gesture recognition and predictions.Our study presents a novel virtual keyboard allowing character input via distinct hand gestures,focusing on two key aspects:hand gesture recognition and character input mechanisms.We developed a novel model with LSTM and fully connected layers for enhanced sequential data processing and hand gesture recognition.We also integrated CNN,max-pooling,and dropout layers for improved spatial feature extraction.This model architecture processes both temporal and spatial aspects of hand gestures,using LSTM to extract complex patterns from frame sequences for a comprehensive understanding of input data.Our unique dataset,essential for training the model,includes 1,662 landmarks from dynamic hand gestures,33 postures,and 468 face landmarks,all captured in real-time using advanced pose estimation.The model demonstrated high accuracy,achieving 98.52%in hand gesture recognition and over 97%in character input across different scenarios.Its excellent performance in real-time testing underlines its practicality and effectiveness,marking a significant advancement in enhancing human-device interactions in the digital age.
文摘With the advancement of technology and the increase in user demands, gesture recognition played a pivotal role in the field of human-computer interaction. Among various sensing devices, Time-of-Flight (ToF) sensors were widely applied due to their low cost. This paper explored the implementation of a human hand posture recognition system using ToF sensors and residual neural networks. Firstly, this paper reviewed the typical applications of human hand recognition. Secondly, this paper designed a hand gesture recognition system using a ToF sensor VL53L5. Subsequently, data preprocessing was conducted, followed by training the constructed residual neural network. Then, the recognition results were analyzed, indicating that gesture recognition based on the residual neural network achieved an accuracy of 98.5% in a 5-class classification scenario. Finally, the paper discussed existing issues and future research directions.
文摘With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive user experience that does not require physical contact and is becoming increasingly prevalent across various fields. Gesture recognition systems based on Frequency Modulated Continuous Wave (FMCW) millimeter-wave radar are receiving widespread attention due to their ability to operate without wearable sensors, their robustness to environmental factors, and the excellent penetrative ability of radar signals. This paper first reviews the current main gesture recognition applications. Subsequently, we introduce the system of gesture recognition based on FMCW radar and provide a general framework for gesture recognition, including gesture data acquisition, data preprocessing, and classification methods. We then discuss typical applications of gesture recognition systems and summarize the performance of these systems in terms of experimental environment, signal acquisition, signal processing, and classification methods. Specifically, we focus our study on four typical gesture recognition systems, including air-writing recognition, gesture command recognition, sign language recognition, and text input recognition. Finally, this paper addresses the challenges and unresolved problems in FMCW radar-based gesture recognition and provides insights into potential future research directions.
基金National Key R&D Programme of China(2022YFF0902202).
文摘Generating co-speech gestures for interactive digital humans remains challenging because of the indeterministic nature of the problem.The authors observe that gestures generated from speech audio or text by existing neural methods often contain less movement shift than expected,which can be viewed as slow or dull.Thus,a new generative model coupled with memory networks as dynamic dictionaries for speech-driven gesture generation with improved diversity is proposed.More specifically,the dictionary network dynamically stores connections between text and pose features in a list of key-value pairs as the memory for the pose generation network to look up;the pose generation network then merges the matching pose features and input audio features for generating the final pose sequences.To make the improvements more accurately measurable,a new objective evaluation metric for gesture diversity that can remove the influence of low-quality motions is also proposed and tested.Quantitative and qualitative experiments demonstrate that the proposed architecture succeeds in generating gestures with improved diversity.
文摘Gesture detection is the primary and most significant step for sign language detection and sign language is the communication medium for people with speaking and hearing disabilities. This paper presents a novel method for dynamic hand gesture detection using Hidden Markov Models (HMMs) where we detect different English alphabet letters by tracing hand movements. The process involves skin color-based segmentation for hand isolation in video frames, followed by morphological operations to enhance image trajectories. Our system employs hand tracking and trajectory smoothing techniques, such as the Kalman filter, to monitor hand movements and refine gesture paths. Quantized sequences are then analyzed using the Baum-Welch Re-estimation Algorithm, an HMM-based approach. A maximum likelihood classifier is used to identify the most probable letter from the test sequences. Our method demonstrates significant improvements over traditional recognition techniques in real-time, automatic hand gesture recognition, particularly in its ability to distinguish complex gestures. The experimental results confirm the effectiveness of our approach in enhancing gesture-based sign language detection to alleviate the barrier between the deaf and hard-of-hearing community and general people.
文摘Holograms provide a characteristic manner to display and convey information, and have been improved to provide better user interactions Holographic interactions are important as they improve user interactions with virtual objects. Gesture interaction is a recent research topic, as it allows users to use their bare hands to directly interact with the hologram. However, it remains unclear whether real hand gestures are well suited for hologram applications. Therefore, we discuss the development process and implementation of three-dimensional object manipulation using natural hand gestures in a hologram. We describe the design and development process for hologram applications and its integration with real hand gesture interactions as initial findings. Experimental results from Nasa TLX form are discussed. Based on the findings, we actualize the user interactions in the hologram.
文摘Machine learning is a technique for analyzing data that aids the construction of mathematical models.Because of the growth of the Internet of Things(IoT)and wearable sensor devices,gesture interfaces are becoming a more natural and expedient human-machine interaction method.This type of artificial intelligence that requires minimal or no direct human intervention in decision-making is predicated on the ability of intelligent systems to self-train and detect patterns.The rise of touch-free applications and the number of deaf people have increased the significance of hand gesture recognition.Potential applications of hand gesture recognition research span from online gaming to surgical robotics.The location of the hands,the alignment of the fingers,and the hand-to-body posture are the fundamental components of hierarchical emotions in gestures.Linguistic gestures may be difficult to distinguish from nonsensical motions in the field of gesture recognition.Linguistic gestures may be difficult to distinguish from nonsensical motions in the field of gesture recognition.In this scenario,it may be difficult to overcome segmentation uncertainty caused by accidental hand motions or trembling.When a user performs the same dynamic gesture,the hand shapes and speeds of each user,as well as those often generated by the same user,vary.A machine-learning-based Gesture Recognition Framework(ML-GRF)for recognizing the beginning and end of a gesture sequence in a continuous stream of data is suggested to solve the problem of distinguishing between meaningful dynamic gestures and scattered generation.We have recommended using a similarity matching-based gesture classification approach to reduce the overall computing cost associated with identifying actions,and we have shown how an efficient feature extraction method can be used to reduce the thousands of single gesture information to four binary digit gesture codes.The findings from the simulation support the accuracy,precision,gesture recognition,sensitivity,and efficiency rates.The Machine Learning-based Gesture Recognition Framework(ML-GRF)had an accuracy rate of 98.97%,a precision rate of 97.65%,a gesture recognition rate of 98.04%,a sensitivity rate of 96.99%,and an efficiency rate of 95.12%.
基金National Key Research and Development(2016YFB1001405)Frontier Subject Key Research(QYZDY-SSW-JSC041)Chinese Academy of Sciences hundred people,National Natural Science Foundation of China(61572479)project support.
文摘With the development of virtual reality(VR)and human-computer interaction technology,how to use natural and efficient interaction methods in the virtual environment has become a hot topic of research.Gesture is one of the most important communication methods of human beings,which can effectively express users'demands.In the past few decades,gesture-based interaction has made significant progress.This article focuses on the gesture interaction technology and discusses the definition and classification of gestures,input devices for gesture interaction,and gesture interaction recognition technology.The application of gesture interaction technology in virtual reality is studied,the existing problems in the current gesture interaction are summarized,and the future development is prospected.
基金Supported by the National Natural Science Foundation of China(61472163)the National Key Research&Development Plan of China(2016YFB1001403)the Science and Technology Project of Shandong Province(2015GGX101025)
文摘In the majority of the interaction process, the operator often focuses on the tracked 3D hand gesture model at the "interaction points" in the collision detectionscene, such as "grasp" and "release" and objects in the scene, without paying attention to the tracked 3D hand gesture model in the total procedure. Thus in this paper, a visual attention distribution model of operator in the "grasp", "translation", "release" and other basic operation procedures is first studied and a 3D hand gesture tracking algorithm based on this distribution model is proposed. Utilizing the algorithm, in the period with a low degree of visual attention, a pre-stored 3D hand gesture animation can be used to directly visualise a 3D hand gesture model in the interactive scene; in the time period with a high degree of visual attention, an existing "frame-by-frame tracking" approach can be adopted to obtain a 3D gesture model. The results demonstrate that the proposed method can achieve real-time tracking of 3D hand gestures with an effective improvement on the efficiency, fluency, and availability of 3D hand gesture interaction.
基金supported by a grant (2021R1F1A1063634)of the Basic Science Research Program through the National Research Foundation (NRF)funded by the Ministry of Education,Republic of Korea.
文摘Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsensors for the smart home application. Developing such a model facilitatesthe medical health field (elders or disabled ones). Home automation has alsobeen proven to be a tremendous benefit for the elderly and disabled. Residentsare admitted to smart homes for comfort, luxury, improved quality of life,and protection against intrusion and burglars. This paper proposes a novelsystem that uses principal component analysis, linear discrimination analysisfeature extraction, and random forest as a classifier to improveHGRaccuracy.We have achieved an accuracy of 94% over the publicly benchmarked HGRdataset. The proposed system can be used to detect hand gestures in thehealthcare industry as well as in the industrial and educational sectors.
文摘Gesture recognition is an important research in the field of human-computer interaction. Hand Gestures are strong variable and flexible, so the gesture recognition has always been an important challenge for the researchers. In this paper, we first outlined the development of gestures recognition, and different classification of gestures based on different purposes. Then we respectively introduced common methods used in the process of gesture segmentation, feature extraction and recognition. Finally, the gesture recognition was summarized and the studying prospects were given.
基金supported by National Natural Science Foundation of China (NSFC) (No. 61804103)National Key R&D Program of China (No. 2017YFA0205002)+8 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Nos. 18KJA535001 and 14KJB 150020)Natural Science Foundation of Jiangsu Province of China (Nos. BK20170343 and BK20180242)China Postdoctoral Science Foundation (No. 2017M610346)State Key Laboratory of Silicon Materials, Zhejiang University (No. SKL2018-03)Nantong Municipal Science and Technology Program (No. GY12017001)Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University (KSL201803)supported by Collaborative Innovation Center of Suzhou Nano Science & Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the 111 ProjectJoint International Research Laboratory of Carbon-Based Functional Materials and Devices
文摘Continuous deforming always leads to the performance degradation of a flexible triboelectric nanogenerator due to the Young’s modulus mismatch of different functional layers.In this work,we fabricated a fiber-shaped stretchable and tailorable triboelectric nanogenerator(FST-TENG)based on the geometric construction of a steel wire as electrode and ingenious selection of silicone rubber as triboelectric layer.Owing to the great robustness and continuous conductivity,the FST-TENGs demonstrate high stability,stretchability,and even tailorability.For a single device with ~6 cm in length and ~3 mm in diameter,the open-circuit voltage of ~59.7 V,transferred charge of ~23.7 nC,short-circuit current of ~2.67 μA and average power of ~2.13 μW can be obtained at 2.5 Hz.By knitting several FST-TENGs to be a fabric or a bracelet,it enables to harvest human motion energy and then to drive a wearable electronic device.Finally,it can also be woven on dorsum of glove to monitor the movements of gesture,which can recognize every single finger,different bending angle,and numbers of bent finger by analyzing voltage signals.
文摘Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning network for hand gesture recognition.The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation.To learn short-term features,each video input is segmented into a fixed number of frame groups.A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot.These two entities are fused and fed into a convolutional neural network(Conv Net)for feature extraction.The Conv Nets for all groups share parameters.To learn longterm features,outputs from all Conv Nets are fed into a long short-term memory(LSTM)network,by which a final classification result is predicted.The new model has been tested with two popular hand gesture datasets,namely the Jester dataset and Nvidia dataset.Comparing with other models,our model produced very competitive results.The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures.
基金This work was supported by National Natural Science Foundation of China(51902035 and 52073037)Natural Science Foundation of Chongqing(cstc2020jcyj-msxmX0807)+1 种基金the Fundamental Research Funds for the Central Universities(2020CDJ-LHSS-001 and 2019CDXZWL001)Chongqing graduate tutor team construction project(ydstd1832).
文摘In human-machine interaction,robotic hands are useful in many scenarios.To operate robotic hands via gestures instead of handles will greatly improve the convenience and intuition of human-machine interaction.Here,we present a magnetic array assisted sliding triboelectric sensor for achieving a real-time gesture interaction between a human hand and robotic hand.With a finger’s traction movement of flexion or extension,the sensor can induce positive/negative pulse signals.Through counting the pulses in unit time,the degree,speed,and direction of finger motion can be judged in realtime.The magnetic array plays an important role in generating the quantifiable pulses.The designed two parts of magnetic array can transform sliding motion into contact-separation and constrain the sliding pathway,respectively,thus improve the durability,low speed signal amplitude,and stability of the system.This direct quantization approach and optimization of wearable gesture sensor provide a new strategy for achieving a natural,intuitive,and real-time human-robotic interaction.