期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
Robust Interactive Method for Hand Gestures Recognition Using Machine Learning 被引量:2
1
作者 Amal Abdullah Mohammed Alteaimi Mohamed Tahar Ben Othman 《Computers, Materials & Continua》 SCIE EI 2022年第7期577-595,共19页
The Hand Gestures Recognition(HGR)System can be employed to facilitate communication between humans and computers instead of using special input and output devices.These devices may complicate communication with compu... The Hand Gestures Recognition(HGR)System can be employed to facilitate communication between humans and computers instead of using special input and output devices.These devices may complicate communication with computers especially for people with disabilities.Hand gestures can be defined as a natural human-to-human communication method,which also can be used in human-computer interaction.Many researchers developed various techniques and methods that aimed to understand and recognize specific hand gestures by employing one or two machine learning algorithms with a reasonable accuracy.Thiswork aims to develop a powerful hand gesture recognition model with a 100%recognition rate.We proposed an ensemble classification model that combines the most powerful machine learning classifiers to obtain diversity and improve accuracy.The majority voting method was used to aggregate accuracies produced by each classifier and get the final classification result.Our model was trained using a self-constructed dataset containing 1600 images of ten different hand gestures.The employing of canny’s edge detector and histogram of oriented gradient method was a great combination with the ensemble classifier and the recognition rate.The experimental results had shown the robustness of our proposed model.Logistic Regression and Support Vector Machine have achieved 100%accuracy.The developed model was validated using two public datasets,and the findings have proved that our model outperformed other compared studies. 展开更多
关键词 Hand gesture recognition canny edge detector histogram of oriented gradient ensemble classifier majority voting
下载PDF
Japanese Sign Language Recognition by Combining Joint Skeleton-Based Handcrafted and Pixel-Based Deep Learning Features with Machine Learning Classification
2
作者 Jungpil Shin Md.Al Mehedi Hasan +2 位作者 Abu Saleh Musa Miah Kota Suzuki Koki Hirooka 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2605-2625,共21页
Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities.In Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japane... Sign language recognition is vital for enhancing communication accessibility among the Deaf and hard-of-hearing communities.In Japan,approximately 360,000 individualswith hearing and speech disabilities rely on Japanese Sign Language(JSL)for communication.However,existing JSL recognition systems have faced significant performance limitations due to inherent complexities.In response to these challenges,we present a novel JSL recognition system that employs a strategic fusion approach,combining joint skeleton-based handcrafted features and pixel-based deep learning features.Our system incorporates two distinct streams:the first stream extracts crucial handcrafted features,emphasizing the capture of hand and body movements within JSL gestures.Simultaneously,a deep learning-based transfer learning stream captures hierarchical representations of JSL gestures in the second stream.Then,we concatenated the critical information of the first stream and the hierarchy of the second stream features to produce the multiple levels of the fusion features,aiming to create a comprehensive representation of the JSL gestures.After reducing the dimensionality of the feature,a feature selection approach and a kernel-based support vector machine(SVM)were used for the classification.To assess the effectiveness of our approach,we conducted extensive experiments on our Lab JSL dataset and a publicly available Arabic sign language(ArSL)dataset.Our results unequivocally demonstrate that our fusion approach significantly enhances JSL recognition accuracy and robustness compared to individual feature sets or traditional recognition methods. 展开更多
关键词 Japanese Sign Language(JSL) hand gesture recognition geometric feature distance feature angle feature GoogleNet
下载PDF
Recent Advances on Deep Learning for Sign Language Recognition
3
作者 Yanqiong Zhang Xianwei Jiang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期2399-2450,共52页
Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automa... Sign language,a visual-gestural language used by the deaf and hard-of-hearing community,plays a crucial role in facilitating communication and promoting inclusivity.Sign language recognition(SLR),the process of automatically recognizing and interpreting sign language gestures,has gained significant attention in recent years due to its potential to bridge the communication gap between the hearing impaired and the hearing world.The emergence and continuous development of deep learning techniques have provided inspiration and momentum for advancing SLR.This paper presents a comprehensive and up-to-date analysis of the advancements,challenges,and opportunities in deep learning-based sign language recognition,focusing on the past five years of research.We explore various aspects of SLR,including sign data acquisition technologies,sign language datasets,evaluation methods,and different types of neural networks.Convolutional Neural Networks(CNN)and Recurrent Neural Networks(RNN)have shown promising results in fingerspelling and isolated sign recognition.However,the continuous nature of sign language poses challenges,leading to the exploration of advanced neural network models such as the Transformer model for continuous sign language recognition(CSLR).Despite significant advancements,several challenges remain in the field of SLR.These challenges include expanding sign language datasets,achieving user independence in recognition systems,exploring different input modalities,effectively fusing features,modeling co-articulation,and improving semantic and syntactic understanding.Additionally,developing lightweight network architectures for mobile applications is crucial for practical implementation.By addressing these challenges,we can further advance the field of deep learning for sign language recognition and improve communication for the hearing-impaired community. 展开更多
关键词 Sign language recognition deep learning artificial intelligence computer vision gesture recognition
下载PDF
Multiscale Feature Fusion for Gesture Recognition Using Commodity Millimeter-Wave Radar
4
作者 Lingsheng Li Weiqing Bai Chong Han 《Computers, Materials & Continua》 SCIE EI 2024年第10期1613-1640,共28页
Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar... Gestures are one of the most natural and intuitive approach for human-computer interaction.Compared with traditional camera-based or wearable sensors-based solutions,gesture recognition using the millimeter wave radar has attracted growing attention for its characteristics of contact-free,privacy-preserving and less environmentdependence.Although there have been many recent studies on hand gesture recognition,the existing hand gesture recognition methods still have recognition accuracy and generalization ability shortcomings in shortrange applications.In this paper,we present a hand gesture recognition method named multiscale feature fusion(MSFF)to accurately identify micro hand gestures.In MSFF,not only the overall action recognition of the palm but also the subtle movements of the fingers are taken into account.Specifically,we adopt hand gesture multiangle Doppler-time and gesture trajectory range-angle map multi-feature fusion to comprehensively extract hand gesture features and fuse high-level deep neural networks to make it pay more attention to subtle finger movements.We evaluate the proposed method using data collected from 10 users and our proposed solution achieves an average recognition accuracy of 99.7%.Extensive experiments on a public mmWave gesture dataset demonstrate the superior effectiveness of the proposed system. 展开更多
关键词 Gesture recognition millimeter-wave(mmWave)radar radio frequency(RF)sensing human-computer interaction multiscale feature fusion
下载PDF
Optimization and Performance Enhancement of Gesture Recognition Algorithm Based on FMCW Millimeter-Wave Radar
5
作者 Zhe He Jinlong Zhou +1 位作者 Decheng Bao Renjing Gao 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期412-421,共10页
Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio... Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems. 展开更多
关键词 gesture recognition biometric filtering frequency-modulated continuous wave(FMCW)millimeter-wave radar feature optimization human-computer interaction
下载PDF
HgaNets:Fusion of Visual Data and Skeletal Heatmap for Human Gesture Action Recognition
6
作者 Wuyan Liang Xiaolong Xu 《Computers, Materials & Continua》 SCIE EI 2024年第4期1089-1103,共15页
Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data... Recognition of human gesture actions is a challenging issue due to the complex patterns in both visual andskeletal features. Existing gesture action recognition (GAR) methods typically analyze visual and skeletal data,failing to meet the demands of various scenarios. Furthermore, multi-modal approaches lack the versatility toefficiently process both uniformand disparate input patterns.Thus, in this paper, an attention-enhanced pseudo-3Dresidual model is proposed to address the GAR problem, called HgaNets. This model comprises two independentcomponents designed formodeling visual RGB (red, green and blue) images and 3Dskeletal heatmaps, respectively.More specifically, each component consists of two main parts: 1) a multi-dimensional attention module forcapturing important spatial, temporal and feature information in human gestures;2) a spatiotemporal convolutionmodule that utilizes pseudo-3D residual convolution to characterize spatiotemporal features of gestures. Then,the output weights of the two components are fused to generate the recognition results. Finally, we conductedexperiments on four datasets to assess the efficiency of the proposed model. The results show that the accuracy onfour datasets reaches 85.40%, 91.91%, 94.70%, and 95.30%, respectively, as well as the inference time is 0.54 s andthe parameters is 2.74M. These findings highlight that the proposed model outperforms other existing approachesin terms of recognition accuracy. 展开更多
关键词 Gesture action recognition multi-dimensional attention pseudo-3D skeletal heatmap
下载PDF
Virtual Keyboard:A Real-Time Hand Gesture Recognition-Based Character Input System Using LSTM and Mediapipe Holistic
7
作者 Bijon Mallik Md Abdur Rahim +2 位作者 Abu Saleh Musa Miah Keun Soo Yun Jungpil Shin 《Computer Systems Science & Engineering》 2024年第2期555-570,共16页
In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and... In the digital age,non-touch communication technologies are reshaping human-device interactions and raising security concerns.A major challenge in current technology is the misinterpretation of gestures by sensors and cameras,often caused by environmental factors.This issue has spurred the need for advanced data processing methods to achieve more accurate gesture recognition and predictions.Our study presents a novel virtual keyboard allowing character input via distinct hand gestures,focusing on two key aspects:hand gesture recognition and character input mechanisms.We developed a novel model with LSTM and fully connected layers for enhanced sequential data processing and hand gesture recognition.We also integrated CNN,max-pooling,and dropout layers for improved spatial feature extraction.This model architecture processes both temporal and spatial aspects of hand gestures,using LSTM to extract complex patterns from frame sequences for a comprehensive understanding of input data.Our unique dataset,essential for training the model,includes 1,662 landmarks from dynamic hand gestures,33 postures,and 468 face landmarks,all captured in real-time using advanced pose estimation.The model demonstrated high accuracy,achieving 98.52%in hand gesture recognition and over 97%in character input across different scenarios.Its excellent performance in real-time testing underlines its practicality and effectiveness,marking a significant advancement in enhancing human-device interactions in the digital age. 展开更多
关键词 Hand gesture recognition M.P.holistic open CV virtual keyboard LSTM human-computer interaction
下载PDF
A Survey of Gesture Recognition Using Frequency Modulated Continuous Wave Radar
8
作者 Xinran Qiu Junhao Liu +3 位作者 Lulu Song Haofei Teng Jiaqi Zhang Zhengjie Wang 《Journal of Computer and Communications》 2024年第6期115-134,共20页
With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive use... With technology advances and human requirements increasing, human-computer interaction plays an important role in our daily lives. Among these interactions, gesture-based recognition offers a natural and intuitive user experience that does not require physical contact and is becoming increasingly prevalent across various fields. Gesture recognition systems based on Frequency Modulated Continuous Wave (FMCW) millimeter-wave radar are receiving widespread attention due to their ability to operate without wearable sensors, their robustness to environmental factors, and the excellent penetrative ability of radar signals. This paper first reviews the current main gesture recognition applications. Subsequently, we introduce the system of gesture recognition based on FMCW radar and provide a general framework for gesture recognition, including gesture data acquisition, data preprocessing, and classification methods. We then discuss typical applications of gesture recognition systems and summarize the performance of these systems in terms of experimental environment, signal acquisition, signal processing, and classification methods. Specifically, we focus our study on four typical gesture recognition systems, including air-writing recognition, gesture command recognition, sign language recognition, and text input recognition. Finally, this paper addresses the challenges and unresolved problems in FMCW radar-based gesture recognition and provides insights into potential future research directions. 展开更多
关键词 Millimeter-Wave Radar Gesture recognition Human-Computer Interaction Feature Extraction
下载PDF
Design and Implementation of Hand Gesture Detection System Using HM Model for Sign Language Recognition Development
9
作者 Sharmin Akter Milu Azmath Fathima +2 位作者 Tanmay Talukder Inzamamul Islam Md. Ismail Siddiqi Emon 《Journal of Data Analysis and Information Processing》 2024年第2期139-150,共12页
Gesture detection is the primary and most significant step for sign language detection and sign language is the communication medium for people with speaking and hearing disabilities. This paper presents a novel metho... Gesture detection is the primary and most significant step for sign language detection and sign language is the communication medium for people with speaking and hearing disabilities. This paper presents a novel method for dynamic hand gesture detection using Hidden Markov Models (HMMs) where we detect different English alphabet letters by tracing hand movements. The process involves skin color-based segmentation for hand isolation in video frames, followed by morphological operations to enhance image trajectories. Our system employs hand tracking and trajectory smoothing techniques, such as the Kalman filter, to monitor hand movements and refine gesture paths. Quantized sequences are then analyzed using the Baum-Welch Re-estimation Algorithm, an HMM-based approach. A maximum likelihood classifier is used to identify the most probable letter from the test sequences. Our method demonstrates significant improvements over traditional recognition techniques in real-time, automatic hand gesture recognition, particularly in its ability to distinguish complex gestures. The experimental results confirm the effectiveness of our approach in enhancing gesture-based sign language detection to alleviate the barrier between the deaf and hard-of-hearing community and general people. 展开更多
关键词 Hand Gesture recognition System
下载PDF
Home Automation-Based Health Assessment Along Gesture Recognition via Inertial Sensors
10
作者 Hammad Rustam Muhammad Muneeb +4 位作者 Suliman A.Alsuhibany Yazeed Yasin Ghadi Tamara Al Shloul Ahmad Jalal Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2023年第4期2331-2346,共16页
Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsens... Hand gesture recognition (HGR) is used in a numerous applications,including medical health-care, industrial purpose and sports detection.We have developed a real-time hand gesture recognition system using inertialsensors for the smart home application. Developing such a model facilitatesthe medical health field (elders or disabled ones). Home automation has alsobeen proven to be a tremendous benefit for the elderly and disabled. Residentsare admitted to smart homes for comfort, luxury, improved quality of life,and protection against intrusion and burglars. This paper proposes a novelsystem that uses principal component analysis, linear discrimination analysisfeature extraction, and random forest as a classifier to improveHGRaccuracy.We have achieved an accuracy of 94% over the publicly benchmarked HGRdataset. The proposed system can be used to detect hand gestures in thehealthcare industry as well as in the industrial and educational sectors. 展开更多
关键词 Genetic algorithm human locomotion activity recognition human–computer interaction human gestures recognition principal hand gestures recognition inertial sensors principal component analysis linear discriminant analysis stochastic neighbor embedding
下载PDF
Dynamic and combined gestures recognition based on multi-feature fusion in a complex environment 被引量:2
11
作者 Wang Liang Liu Guixi Duan Hongyan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2015年第2期81-88,共8页
Gestures recognition is of great importance to intelligent human-computer interaction technology, but it is also very difficult to deal with, especially when the environment is quite complex. In this paper, the recogn... Gestures recognition is of great importance to intelligent human-computer interaction technology, but it is also very difficult to deal with, especially when the environment is quite complex. In this paper, the recognition algorithm of dynamic and combined gestures, which based on multi-feature fusion, is proposed. Firstly, in image segmentation stage, the algorithm extracts interested region of gestures in color and depth map by combining with the depth information. Then, to establish support vector machine (SVM) model for static hand gestures recognition, the algorithm fuses weighted Hu invariant moments of depth map into the Histogram of oriented gradients (HOG) of the color image. Finally, an hidden Markov model (HMM) toolbox supporting multi-dimensional continuous data input is adopted to do the training and recognition. Experimental results show that the proposed algorithm can not only overcome the influence of skin object, multi-object moving and hand gestures interference in the background, but also real-time and practical in Human-Computer interaction. 展开更多
关键词 gesture recognition a weighted Hu HOG SVM HMM
原文传递
A Novel SE-CNN Attention Architecture for sEMG-Based Hand Gesture Recognition 被引量:4
12
作者 Zhengyuan Xu Junxiao Yu +4 位作者 Wentao Xiang Songsheng Zhu Mubashir Hussain Bin Liu Jianqing Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期157-177,共21页
In this article,to reduce the complexity and improve the generalization ability of current gesture recognition systems,we propose a novel SE-CNN attention architecture for sEMG-based hand gesture recognition.The propo... In this article,to reduce the complexity and improve the generalization ability of current gesture recognition systems,we propose a novel SE-CNN attention architecture for sEMG-based hand gesture recognition.The proposed algorithm introduces a temporal squeeze-and-excite block into a simple CNN architecture and then utilizes it to recalibrate the weights of the feature outputs from the convolutional layer.By enhancing important features while suppressing useless ones,the model realizes gesture recognition efficiently.The last procedure of the proposed algorithm is utilizing a simple attention mechanism to enhance the learned representations of sEMG signals to performmulti-channel sEMG-based gesture recognition tasks.To evaluate the effectiveness and accuracy of the proposed algorithm,we conduct experiments involving multi-gesture datasets Ninapro DB4 and Ninapro DB5 for both inter-session validation and subject-wise cross-validation.After a series of comparisons with the previous models,the proposed algorithm effectively increases the robustness with improved gesture recognition performance and generalization ability. 展开更多
关键词 Hand gesture recognition SEMG CNN temporal squeeze-and-excite ATTENTION
下载PDF
A Novel Machine Learning-Based Hand Gesture Recognition Using HCI on IoT Assisted Cloud Platform 被引量:1
13
作者 Saurabh Adhikari Tushar Kanti Gangopadhayay +4 位作者 Souvik Pal D.Akila Mamoona Humayun Majed Alfayad N.Z.Jhanjhi 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期2123-2140,共18页
Machine learning is a technique for analyzing data that aids the construction of mathematical models.Because of the growth of the Internet of Things(IoT)and wearable sensor devices,gesture interfaces are becoming a mo... Machine learning is a technique for analyzing data that aids the construction of mathematical models.Because of the growth of the Internet of Things(IoT)and wearable sensor devices,gesture interfaces are becoming a more natural and expedient human-machine interaction method.This type of artificial intelligence that requires minimal or no direct human intervention in decision-making is predicated on the ability of intelligent systems to self-train and detect patterns.The rise of touch-free applications and the number of deaf people have increased the significance of hand gesture recognition.Potential applications of hand gesture recognition research span from online gaming to surgical robotics.The location of the hands,the alignment of the fingers,and the hand-to-body posture are the fundamental components of hierarchical emotions in gestures.Linguistic gestures may be difficult to distinguish from nonsensical motions in the field of gesture recognition.Linguistic gestures may be difficult to distinguish from nonsensical motions in the field of gesture recognition.In this scenario,it may be difficult to overcome segmentation uncertainty caused by accidental hand motions or trembling.When a user performs the same dynamic gesture,the hand shapes and speeds of each user,as well as those often generated by the same user,vary.A machine-learning-based Gesture Recognition Framework(ML-GRF)for recognizing the beginning and end of a gesture sequence in a continuous stream of data is suggested to solve the problem of distinguishing between meaningful dynamic gestures and scattered generation.We have recommended using a similarity matching-based gesture classification approach to reduce the overall computing cost associated with identifying actions,and we have shown how an efficient feature extraction method can be used to reduce the thousands of single gesture information to four binary digit gesture codes.The findings from the simulation support the accuracy,precision,gesture recognition,sensitivity,and efficiency rates.The Machine Learning-based Gesture Recognition Framework(ML-GRF)had an accuracy rate of 98.97%,a precision rate of 97.65%,a gesture recognition rate of 98.04%,a sensitivity rate of 96.99%,and an efficiency rate of 95.12%. 展开更多
关键词 Machine learning gesture recognition framework accuracy rate precision rate gesture recognition rate sensitivity rate efficiency rate
下载PDF
A Novel Action Transformer Network for Hybrid Multimodal Sign Language Recognition
14
作者 Sameena Javaid Safdar Rizvi 《Computers, Materials & Continua》 SCIE EI 2023年第1期523-537,共15页
Sign language fills the communication gap for people with hearing and speaking ailments.It includes both visual modalities,manual gestures consisting of movements of hands,and non-manual gestures incorporating body mo... Sign language fills the communication gap for people with hearing and speaking ailments.It includes both visual modalities,manual gestures consisting of movements of hands,and non-manual gestures incorporating body movements including head,facial expressions,eyes,shoulder shrugging,etc.Previously both gestures have been detected;identifying separately may have better accuracy,butmuch communicational information is lost.Aproper sign language mechanism is needed to detect manual and non-manual gestures to convey the appropriate detailed message to others.Our novel proposed system contributes as Sign LanguageAction Transformer Network(SLATN),localizing hand,body,and facial gestures in video sequences.Here we are expending a Transformer-style structural design as a“base network”to extract features from a spatiotemporal domain.Themodel impulsively learns to track individual persons and their action context inmultiple frames.Furthermore,a“head network”emphasizes hand movement and facial expression simultaneously,which is often crucial to understanding sign language,using its attention mechanism for creating tight bounding boxes around classified gestures.The model’s work is later compared with the traditional identification methods of activity recognition.It not only works faster but achieves better accuracy as well.Themodel achieves overall 82.66%testing accuracy with a very considerable performance of computation with 94.13 Giga-Floating Point Operations per Second(G-FLOPS).Another contribution is a newly created dataset of Pakistan Sign Language forManual and Non-Manual(PkSLMNM)gestures. 展开更多
关键词 Sign language gesture recognition manual signs non-manual signs action transformer network
下载PDF
A Hybrid Model Based on ResNet and GCN for sEMG-Based Gesture Recognition
15
作者 Xianjing Xu Haiyan Jiang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第2期219-229,共11页
The surface electromyography(sEMG)is one of the basic processing techniques to the gesture recognition because of its inherent advantages of easy collection and non-invasion.However,limited by feature extraction and c... The surface electromyography(sEMG)is one of the basic processing techniques to the gesture recognition because of its inherent advantages of easy collection and non-invasion.However,limited by feature extraction and classifier selection,the adaptability and accuracy of the conventional machine learning still need to promote with the increase of the input dimension and the number of output classifications.Moreover,due to the different characteristics of sEMG data and image data,the conventional convolutional neural network(CNN)have yet to fit sEMG signals.In this paper,a novel hybrid model combining CNN with the graph convolutional network(GCN)was constructed to improve the performance of the gesture recognition.Based on the characteristics of sEMG signal,GCN was introduced into the model through a joint voting network to extract the muscle synergy feature of the sEMG signal.Such strategy optimizes the structure and convolution kernel parameters of the residual network(ResNet)with the classification accuracy on the NinaPro DBl up to 90.07%.The experimental results and comparisons confirm the superiority of the proposed hybrid model for gesture recognition from the sEMG signals. 展开更多
关键词 deep learning graph convolutional network(GCN) gesture recognition residual net-work(ResNet) surface electromyographic(sEMG)signals
下载PDF
Appearance Based Dynamic Hand Gesture Recognition Using 3D Separable Convolutional Neural Network
16
作者 Muhammad Rizwan Sana Ul Haq +4 位作者 Noor Gul Muhammad Asif Syed Muslim Shah Tariqullah Jan Naveed Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第7期1213-1247,共35页
Appearance-based dynamic Hand Gesture Recognition(HGR)remains a prominent area of research in Human-Computer Interaction(HCI).Numerous environmental and computational constraints limit its real-time deployment.In addi... Appearance-based dynamic Hand Gesture Recognition(HGR)remains a prominent area of research in Human-Computer Interaction(HCI).Numerous environmental and computational constraints limit its real-time deployment.In addition,the performance of a model decreases as the subject’s distance from the camera increases.This study proposes a 3D separable Convolutional Neural Network(CNN),considering the model’s computa-tional complexity and recognition accuracy.The 20BN-Jester dataset was used to train the model for six gesture classes.After achieving the best offline recognition accuracy of 94.39%,the model was deployed in real-time while considering the subject’s attention,the instant of performing a gesture,and the subject’s distance from the camera.Despite being discussed in numerous research articles,the distance factor remains unresolved in real-time deployment,which leads to degraded recognition results.In the proposed approach,the distance calculation substantially improves the classification performance by reducing the impact of the subject’s distance from the camera.Additionally,the capability of feature extraction,degree of relevance,and statistical significance of the proposed model against other state-of-the-art models were validated using t-distributed Stochastic Neighbor Embedding(t-SNE),Mathew’s Correlation Coefficient(MCC),and the McNemar test,respectively.We observed that the proposed model exhibits state-of-the-art outcomes and a comparatively high significance level. 展开更多
关键词 3D separable CNN computational complexity hand gesture recognition human-computer interaction
下载PDF
Multimodal Spatiotemporal Feature Map for Dynamic Gesture Recognition
17
作者 Xiaorui Zhang Xianglong Zeng +2 位作者 Wei Sun Yongjun Ren Tong Xu 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期671-686,共16页
Gesture recognition technology enables machines to read human gestures and has significant application prospects in the fields of human-computer interaction and sign language translation.Existing researches usually us... Gesture recognition technology enables machines to read human gestures and has significant application prospects in the fields of human-computer interaction and sign language translation.Existing researches usually use convolutional neural networks to extract features directly from raw gesture data for gesture recognition,but the networks are affected by much interference information in the input data and thus fit to some unimportant features.In this paper,we proposed a novel method for encoding spatio-temporal information,which can enhance the key features required for gesture recognition,such as shape,structure,contour,position and hand motion of gestures,thereby improving the accuracy of gesture recognition.This encoding method can encode arbitrarily multiple frames of gesture data into a single frame of the spatio-temporal feature map and use the spatio-temporal feature map as the input to the neural network.This can guide the model to fit important features while avoiding the use of complex recurrent network structures to extract temporal features.In addition,we designed two sub-networks and trained the model using a sub-network pre-training strategy that trains the sub-networks first and then the entire network,so as to avoid the subnetworks focusing too much on the information of a single category feature and being overly influenced by each other’s features.Experimental results on two public gesture datasets show that the proposed spatio-temporal information encoding method achieves advanced accuracy. 展开更多
关键词 Dynamic gesture recognition spatio-temporal information encoding multimodal input pre-training score fusion
下载PDF
Implementation of natural hand gestures in holograms for 3D object manipulation
18
作者 Ajune Wanis ISMAIL Muhammad Akma IMAN 《Virtual Reality & Intelligent Hardware》 EI 2023年第5期439-450,共12页
Holograms provide a characteristic manner to display and convey information, and have been improved to provide better user interactions Holographic interactions are important as they improve user interactions with vir... Holograms provide a characteristic manner to display and convey information, and have been improved to provide better user interactions Holographic interactions are important as they improve user interactions with virtual objects. Gesture interaction is a recent research topic, as it allows users to use their bare hands to directly interact with the hologram. However, it remains unclear whether real hand gestures are well suited for hologram applications. Therefore, we discuss the development process and implementation of three-dimensional object manipulation using natural hand gestures in a hologram. We describe the design and development process for hologram applications and its integration with real hand gesture interactions as initial findings. Experimental results from Nasa TLX form are discussed. Based on the findings, we actualize the user interactions in the hologram. 展开更多
关键词 HOLOGRAM Gesture interaction Natural hand gesture Three-dimensional object manipulation Gesture recognition
下载PDF
Hand Gesture Recognition for Disabled People Using Bayesian Optimization with Transfer Learning
19
作者 Fadwa Alrowais Radwa Marzouk +1 位作者 Fahd N.Al-Wesabi Anwer Mustafa Hilal 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3325-3342,共18页
Sign language recognition can be treated as one of the efficient solu-tions for disabled people to communicate with others.It helps them to convey the required data by the use of sign language with no issues.The lates... Sign language recognition can be treated as one of the efficient solu-tions for disabled people to communicate with others.It helps them to convey the required data by the use of sign language with no issues.The latest develop-ments in computer vision and image processing techniques can be accurately uti-lized for the sign recognition process by disabled people.American Sign Language(ASL)detection was challenging because of the enhancing intraclass similarity and higher complexity.This article develops a new Bayesian Optimiza-tion with Deep Learning-Driven Hand Gesture Recognition Based Sign Language Communication(BODL-HGRSLC)for Disabled People.The BODL-HGRSLC technique aims to recognize the hand gestures for disabled people’s communica-tion.The presented BODL-HGRSLC technique integrates the concepts of compu-ter vision(CV)and DL models.In the presented BODL-HGRSLC technique,a deep convolutional neural network-based residual network(ResNet)model is applied for feature extraction.Besides,the presented BODL-HGRSLC model uses Bayesian optimization for the hyperparameter tuning process.At last,a bidir-ectional gated recurrent unit(BiGRU)model is exploited for the HGR procedure.A wide range of experiments was conducted to demonstrate the enhanced perfor-mance of the presented BODL-HGRSLC model.The comprehensive comparison study reported the improvements of the BODL-HGRSLC model over other DL models with maximum accuracy of 99.75%. 展开更多
关键词 Deep learning hand gesture recognition disabled people computer vision bayesian optimization
下载PDF
An Efficient and Robust Hand Gesture Recognition System of Sign Language Employing Finetuned Inception-V3 and Efficientnet-B0 Network
20
作者 Adnan Hussain Sareer Ul Amin +1 位作者 Muhammad Fayaz Sanghyun Seo 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3509-3525,共17页
Hand Gesture Recognition(HGR)is a promising research area with an extensive range of applications,such as surgery,video game techniques,and sign language translation,where sign language is a complicated structured for... Hand Gesture Recognition(HGR)is a promising research area with an extensive range of applications,such as surgery,video game techniques,and sign language translation,where sign language is a complicated structured form of hand gestures.The fundamental building blocks of structured expressions in sign language are the arrangement of the fingers,the orientation of the hand,and the hand’s position concerning the body.The importance of HGR has increased due to the increasing number of touchless applications and the rapid growth of the hearing-impaired population.Therefore,real-time HGR is one of the most effective interaction methods between computers and humans.Developing a user-free interface with good recognition performance should be the goal of real-time HGR systems.Nowadays,Convolutional Neural Network(CNN)shows great recognition rates for different image-level classification tasks.It is challenging to train deep CNN networks like VGG-16,VGG-19,Inception-v3,and Efficientnet-B0 from scratch because only some significant labeled image datasets are available for static hand gesture images.However,an efficient and robust hand gesture recognition system of sign language employing finetuned Inception-v3 and Efficientnet-Bo network is proposed to identify hand gestures using a comparative small HGR dataset.Experiments show that Inception-v3 achieved 90%accuracy and 0.93%precision,0.91%recall,and 0.90%f1-score,respectively,while EfficientNet-B0 achieved 99%accuracy and 0.98%,0.97%,0.98%,precision,recall,and f1-score respectively. 展开更多
关键词 Pretrained CNN hand gesture recognition transfer learning
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部