为了降低服装目标检测模型的参数量和浮点型计算量,提出一种改进的轻量级服装目标检测模型——GYOLOv5s.首先使用Ghost卷积重构YOLOv5s的主干网络;然后使用DeepFashion2数据集中的部分数据进行模型训练和验证;最后将训练好的模型用于服...为了降低服装目标检测模型的参数量和浮点型计算量,提出一种改进的轻量级服装目标检测模型——GYOLOv5s.首先使用Ghost卷积重构YOLOv5s的主干网络;然后使用DeepFashion2数据集中的部分数据进行模型训练和验证;最后将训练好的模型用于服装图像的目标检测.实验结果表明,G-YOLOv5s的mAP达到71.7%,模型体积为9.09 MB,浮点型计算量为9.8 G FLOPs,与改进前的YOLOv5s网络相比,模型体积压缩了34.8%,计算量减少了41.3%,精度仅下降1.3%,方便部署在资源有限的设备中使用.展开更多
针对跌倒检测任务中复杂信息干扰和数据集缺乏导致模型精度不高的问题,设计一种高精度跌倒检测算法,降低模型参数的同时保持各种场景下的鲁棒性。该算法基于YOLOv5s改进,在骨干网络中使用Ghost module和解耦全连接注意力,以较低计算开...针对跌倒检测任务中复杂信息干扰和数据集缺乏导致模型精度不高的问题,设计一种高精度跌倒检测算法,降低模型参数的同时保持各种场景下的鲁棒性。该算法基于YOLOv5s改进,在骨干网络中使用Ghost module和解耦全连接注意力,以较低计算开销提升模型在光线变化、遮挡等干扰环境下的性能。在颈部层使用自适应感受野和空间通道混合注意力,提升神经元对不同尺度特征的适应性,应对人体形变、视角变化等干扰。引入EIoU损失函数,加速收敛提升训练精度。在公开数据集Le2i Fall Detection Dataset和UR Fall Detection上,精确率、召回率、mAP0.5和mAP(0.5:0.95)相比YOLOv5s分别提高4.0%,4.2%,2.9%和4.3%,参数量降低38.6%。该算法在多种应用场景下都保持较高检测精度,参数量较低,满足实际应用场景部署要求。展开更多
文摘为了降低服装目标检测模型的参数量和浮点型计算量,提出一种改进的轻量级服装目标检测模型——GYOLOv5s.首先使用Ghost卷积重构YOLOv5s的主干网络;然后使用DeepFashion2数据集中的部分数据进行模型训练和验证;最后将训练好的模型用于服装图像的目标检测.实验结果表明,G-YOLOv5s的mAP达到71.7%,模型体积为9.09 MB,浮点型计算量为9.8 G FLOPs,与改进前的YOLOv5s网络相比,模型体积压缩了34.8%,计算量减少了41.3%,精度仅下降1.3%,方便部署在资源有限的设备中使用.
文摘针对跌倒检测任务中复杂信息干扰和数据集缺乏导致模型精度不高的问题,设计一种高精度跌倒检测算法,降低模型参数的同时保持各种场景下的鲁棒性。该算法基于YOLOv5s改进,在骨干网络中使用Ghost module和解耦全连接注意力,以较低计算开销提升模型在光线变化、遮挡等干扰环境下的性能。在颈部层使用自适应感受野和空间通道混合注意力,提升神经元对不同尺度特征的适应性,应对人体形变、视角变化等干扰。引入EIoU损失函数,加速收敛提升训练精度。在公开数据集Le2i Fall Detection Dataset和UR Fall Detection上,精确率、召回率、mAP0.5和mAP(0.5:0.95)相比YOLOv5s分别提高4.0%,4.2%,2.9%和4.3%,参数量降低38.6%。该算法在多种应用场景下都保持较高检测精度,参数量较低,满足实际应用场景部署要求。