This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent ...This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.展开更多
In this paper,we establish a large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise.The main difficulties come from the highly non-linear coefficient and the jump noise....In this paper,we establish a large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise.The main difficulties come from the highly non-linear coefficient and the jump noise.Here,we adopt a new sufficient condition for the weak convergence criterion of the large deviation principle,which was initially proposed by Matoussi,Sabbagh and Zhang(2021).展开更多
基金supported by the National Natural Science Foundation of China(12126318,12126302).
文摘This paper develops a generalized scalar auxiliary variable(SAV)method for the time-dependent Ginzburg-Landau equations.The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations.In this method,the system is decoupled and linearized to avoid solving the non-linear equation at each step.The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability,and this is confirmed by the numerical result,and also shows that the numerical algorithm is stable.
基金partially supported by the National Natural Science Foundation of China(11871382,12071361)partially supported by the National Natural Science Foundation of China(11971361,11731012)。
文摘In this paper,we establish a large deviation principle for the stochastic generalized Ginzburg-Landau equation driven by jump noise.The main difficulties come from the highly non-linear coefficient and the jump noise.Here,we adopt a new sufficient condition for the weak convergence criterion of the large deviation principle,which was initially proposed by Matoussi,Sabbagh and Zhang(2021).