Taizhou Yangtze River Bridge as a long-span suspension bridge,the finite element model(FEM)of it is established using the ANSYS Software.The beam4 element is used to simulate the main beam to establish the“spine beam...Taizhou Yangtze River Bridge as a long-span suspension bridge,the finite element model(FEM)of it is established using the ANSYS Software.The beam4 element is used to simulate the main beam to establish the“spine beam”model of the Taizhou Yangtze River Bridge.The calculated low-order vibration mode frequency of the FEM is in good agreement with the completion test results.The model can simulate the overall dynamic response of the bridge.Based on the vehicle load survey,the Monte Carlo method is applied to simulate the traffic load flow.Then the overall dynamic response analysis of FEM is car-ried out.Taking the bending moment of the main beam as the control index,the fatigue sensitive section in the steel box girder of FEM is analyzed.Based on the strain time history data of steel box girder recorded by the structural health mon-itoring system(SHM),the true stress response of steel box girder under vehicle load is extracted.Taking the cumulative fatigue damage increment as the evalua-tion index,the fati gue performance evaluation of the steel box girders is con-ducted based on the collected health monitoring data.The fatigue effect of the beam section near the steel tower,especially the first section of the middle tower,is the key section of the fatigue analysis by health morning system,which is con-sistent with the calculation results of FEM.展开更多
基金This research has been supported by the National Natural Science Foundation of China(Grant No.51778135)the National Key R&D Program Foundation of China(Grant No.201 TYFC0806001)+2 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160207)Aeronautical Science Foundation of China(Grant No.20130969010)the Fundamental Research Funds for the Central Universities and Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX18__0113 and KYLX16_0253).
文摘Taizhou Yangtze River Bridge as a long-span suspension bridge,the finite element model(FEM)of it is established using the ANSYS Software.The beam4 element is used to simulate the main beam to establish the“spine beam”model of the Taizhou Yangtze River Bridge.The calculated low-order vibration mode frequency of the FEM is in good agreement with the completion test results.The model can simulate the overall dynamic response of the bridge.Based on the vehicle load survey,the Monte Carlo method is applied to simulate the traffic load flow.Then the overall dynamic response analysis of FEM is car-ried out.Taking the bending moment of the main beam as the control index,the fatigue sensitive section in the steel box girder of FEM is analyzed.Based on the strain time history data of steel box girder recorded by the structural health mon-itoring system(SHM),the true stress response of steel box girder under vehicle load is extracted.Taking the cumulative fatigue damage increment as the evalua-tion index,the fati gue performance evaluation of the steel box girders is con-ducted based on the collected health monitoring data.The fatigue effect of the beam section near the steel tower,especially the first section of the middle tower,is the key section of the fatigue analysis by health morning system,which is con-sistent with the calculation results of FEM.