The glacial trough is a common glacier erosion landscape, which plays an important role in the study of glacier erosion processes. In a sharp contrast with the developing river, which is generally meandering, the deve...The glacial trough is a common glacier erosion landscape, which plays an important role in the study of glacier erosion processes. In a sharp contrast with the developing river, which is generally meandering, the developing glacial trough is usually wide and straight. Is the straightness of the glacial trough just the special phenomenon of some areas or a universal feature? What controls the straightness of the glacial trough? Until now, these issues have not been studied yet. In this paper, we conduct systematic numerical models of the glacier erosion and simulate the erosion evolution process of the glacial trough. Numerical simulations show that:(1) while the meandering glacier is eroding deeper to form the U-shaped cross section, the glacier is eroding laterally. The erosion rate of the ice-facing slope is bigger than that of the back-slope.(2) The smaller(bigger) the slope is, the smaller(bigger) the glacier erosion intensity is.(3) The smaller(bigger) the ice discharge is, the smaller(bigger) the glacier erosion intensity is. In the glacier erosion process, the erosion rate of the ice-facing slope is always greater than that of the back-slope. Therefore, the glacial trough always develops into more straight form. This paper comes to the conclusion that the shape evolution of the glacial trough is controlled mainly by the erosion mechanism of the glacier. Thereby, the glacial trough prefers straight geometry.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41174067)
文摘The glacial trough is a common glacier erosion landscape, which plays an important role in the study of glacier erosion processes. In a sharp contrast with the developing river, which is generally meandering, the developing glacial trough is usually wide and straight. Is the straightness of the glacial trough just the special phenomenon of some areas or a universal feature? What controls the straightness of the glacial trough? Until now, these issues have not been studied yet. In this paper, we conduct systematic numerical models of the glacier erosion and simulate the erosion evolution process of the glacial trough. Numerical simulations show that:(1) while the meandering glacier is eroding deeper to form the U-shaped cross section, the glacier is eroding laterally. The erosion rate of the ice-facing slope is bigger than that of the back-slope.(2) The smaller(bigger) the slope is, the smaller(bigger) the glacier erosion intensity is.(3) The smaller(bigger) the ice discharge is, the smaller(bigger) the glacier erosion intensity is. In the glacier erosion process, the erosion rate of the ice-facing slope is always greater than that of the back-slope. Therefore, the glacial trough always develops into more straight form. This paper comes to the conclusion that the shape evolution of the glacial trough is controlled mainly by the erosion mechanism of the glacier. Thereby, the glacial trough prefers straight geometry.
文摘利用元素及同位素地球化学方法研究了冲绳海槽中部沉积物岩芯中有机碳及磷的地球化学特征及影响因素。结果表明,冲绳海槽沉积速率(16.5~32.5 cm/ka)变化小,不是沉积物中有机碳埋藏的重要影响因素。相对于全新世氧化性底水环境,末次盛冰期/冰消期冲绳海槽缺氧底水环境提高了沉积物对有机碳的埋藏效率。冲绳海槽沉积物中各形态磷的相对含量与其他边缘海沉积物中的相似。交换态磷(Ex-P)含量低、变化小。末次盛冰期/冰消期缺氧底水环境下铁氧化物的还原溶解导致铁结合磷(Fe-P)释放以及自生磷矿物(Au-P)的形成。全新世氧化性底水条件有利于铁氧化物的有效再生及对磷的再吸附,但不利于Au-P的保存。总有机碳(TOC)和有机磷(Org-P)之间良好的相关性表明TOC埋藏对Org-P含量的重要控制作用。冲绳海槽沉积物中碎屑磷(De-P)含量低于长江口及东海陆架沉积物中的含量,这与陆源碎屑向外海传输减弱有关。在约9.3 ka BP(岩芯200 cm深度),TOC、Fe-P、Org-P、De-P以及FeHR均出现的极小值可能由物质坡移造成。