The Qinghai-Tibet Plateau has developed into a vast fortress-like structure that has recently presented a barrier limiting the egress of moisture-bearing air masses. Lower sea levels also affected the climate. This pa...The Qinghai-Tibet Plateau has developed into a vast fortress-like structure that has recently presented a barrier limiting the egress of moisture-bearing air masses. Lower sea levels also affected the climate. This paper examines their effects on the current evidence for the timing of past glaciations, and the development and evolution of permafrost. There are two theories regarding glaciation on the Qinghai-Tibet Plateau (QTP). Kuhle suggested that there was a major, unified ice-cap during the Last Glacial Maximum (LGM), whereas major Chinese glaciologists and others have not found or verified reliable evidence for this per se. There have been limited glaciations during the last 1.1 Ma B.P. but with increasing dominance of permafrost including both primary and secondary tessellons infilled with rock, sand or loess. The East Asia Monsoon was absent in this area during the main LGM, starting at 〉30 ka B.P. on the plateau, with sufficient precipitation reappearing about 19 ka B.P. to produce ice-wedges. A weak Megathermal event took place between 8.5 and 6.0 ka B.P., followed by Neoglacial events exhibiting peak cold at 5.3-4.7 ka, 3.1-1.5 ka, and the Little Ice Age (LIA) after 0.7 ka. Subsequently, mean annual air temperature has increased by 4 ℃.展开更多
The glacial morphology of southern South American presents invaluable evidence to reconstruct former glacier behaviour and its relation to climate and environmental changes. However, there are still spatial and tempor...The glacial morphology of southern South American presents invaluable evidence to reconstruct former glacier behaviour and its relation to climate and environmental changes. However, there are still spatial and temporal gaps in the reconstruction of the Holocene Patagonian glacial landscape. Here we present the first geomorphological record for the Sierra Baguales Mountain Range(SBMR), forming the eastern foothills of the Southern Patagonian Andes 200 km from the Pacific coast. This area is topographically isolated from the Southern Patagonian Ice Field(SPIF), and is affected by the Westerly Winds. The study area shows evidence of ice sheet and alpine glaciations related to Andean uplift,which caused a marked climatic contrast between its western and eastern flanks since the Last Glacial Maximum(LGM). The regional rock mass strength and precipitation gradient acted as a controlling factor in the glacial cirque distribution and sizes, as well as in the development of glaciation types. We report new radiocarbon dates associated with warm/dry to cold/wet climatic changes during the middle Holocene, when former small alpine glaciers were located in the uppermost section of the SBMR basins, and eventually converged to form a small ice field or a composite valley glacier at lower elevations.This can be explained by an estimated regional temperature drop of 3.8°C±0.8°C, based on a 585±26m Equilibrium Line Altitude(ELA) descent, inferred by geomorphological evidence and the Accumulation Area Ratio(AAR), in addition to a free-air adiabatic lapse rate. Subsequently, the glaciers receded due to climatic factors including a rise in temperature, as well as non-climatic factors, mainly the glacier bedrock topography.展开更多
The Nanhua basin in South China hosts well-preserved middle-late Neoproterozoic sedimentary and volcanic rocks that are critical for studying the basin evolution, the breakup of the supercontinent Rodinia, the nature ...The Nanhua basin in South China hosts well-preserved middle-late Neoproterozoic sedimentary and volcanic rocks that are critical for studying the basin evolution, the breakup of the supercontinent Rodinia, the nature and dynamics of the "snowball" Earth and diversification of metazoans. Establishing a stratigraphic framework is crucial for better understanding the interactions between tectonic, paleoclimatic and biotic events recorded in the Nanhua basin, but existing stratigraphic correlations remain debated, particularly for pre-Ediacaran strata. Here we report new Laser Ablation Inductively Coupled Plasma Mass Spectrometry(LA-ICPMS) U-Pb zircon ages from the middle and topmost Wuqiangxi Formation(the upper stratigraphic unit of the Banxi Group) in Siduping, Hunan Province, South China. Two samples show similar age distribution, with two major peaks at ca. 820 Ma and 780 Ma and one minor peak at ca. 910 Ma, suggesting that the Wuqiangxi sandstone was mainly sourced from Neoproterozoic rocks. Two major age peaks correspond to two phases of magmatic events associated with the rifting of the Nanhua basin, and the minor peak at ca. 910 Ma may correspond to the Shuangxiwu volcanic arc magmatism, which represents pre-collision/amalgamation subduction on the southeastern margin of the Yangtze Block. The youngest zircon group from the topmost Wuqiangxi Formation has a weighted mean age of 714.6±5.2 Ma, which is likely close to the depositional age of the uppermost Banxi Group. This age, along with the ages reported from other sections, constrains that the Banxi Group was deposited between ca. 820 Ma and ca. 715 Ma. The age of 714.6±5.2 Ma from the top of the Wuqiangxi Formation is indistinguishable with the SIMS U-Pb age of 715.9± 2.8 Ma from the upper Gongdong Formation in the Sibao village section of northern Guangxi, South China. It is also, within uncertainties, overlapped with two TIMS U-Pb ages from pre-Sturtian strata in Oman and Canada. These ages indicate that the Jiangkou(Sturtian) glaciation in South China started at ca. 715 Ma instead of ca. 780 Ma and support a globally synchronous initiation of the Sturtian glaciation at ca. 715 Ma.展开更多
This paper compiles lithostratigraphic and geochronological data obtained for the Palaeoproterozoic glacial diamictite-bearing successions,and thereby provides insights into understanding the geological processes caus...This paper compiles lithostratigraphic and geochronological data obtained for the Palaeoproterozoic glacial diamictite-bearing successions,and thereby provides insights into understanding the geological processes causing the Huronian Glaciation Event.The majority of evidence for appearances of this glaciation event can be related to the Kenorland supercontinent breakup,allied to significant atmospheric change,as well as blooms of biogeochemical oxygenic photosynthesis.In this paper,the Huronian Glaciation Event is constrained to have occurred synchronously during 2.29-2.25 Ga,accompanied by dramatic environmental changes characteristic of the Great Oxidation Event which includes the pre- 2.3 Ga hydrosphere oxidation and the post-2.3 Ga atmosphere oxygenation.展开更多
Late Pleistocene glaciation was restricted to only a few high mountains in eastern China. The Gongwang mountains constitute one of the typical places once glaciated. Geomorphic mapping of the area and the TL dating pr...Late Pleistocene glaciation was restricted to only a few high mountains in eastern China. The Gongwang mountains constitute one of the typical places once glaciated. Geomorphic mapping of the area and the TL dating provides evidence for at least four distinct glaciations. YJT-Ⅰ glacial advance occurred about 100 ka BP and two TL absolute ages (101,100 ± 7780 a BP; 104,000± 8300 a BP) indicate this advance happened during the Penultimale Glaciation. The early stage glacial advance (YJT-Ⅱ advance) during the last glaciation occurred about 40,920 ± 3400 a BP. The last glacial maximum advance (YJT-Ⅲ advance) about 18-25 ka BP, which sustained by two TL ages (18,230 ±1420 a BP; 25,420 ± 2110 a BP). The Penultimale and the early stage glaciations were more extensive and the last glacial maximum (LGM) and the late-glacial period (YJT-Ⅳ advance, 10 ka BP) were progressively less extensive. Correlated with the other mountains in eastern China, these glacial advances in the Gongwang mountains just like the advances in the western part such as Diancang mountains, Yulong mountains of Yunnan Province and the glacier series are more complete than the adjacent mid-latitude regions such as Taibai mountain and Taiwan mountains and are roughly representative of climate changes during the last glacial cycle in Yunnan Province.展开更多
Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recogn...Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recognized. The largest one occurred in the Late Middle Pleistocene with piedmont glaciers, ice caps and trellis valley glaciers in many high peak regions. But here is no evidence of a unified ice sheet covering the whole plateau as described by M. Kuhle. Due to the further uplifting of the Himalayas and Qinghai-Xizang Plateau the climate became progressively drier, diminishing the extension of glaciers during the Late Pleistocene. The elevation of the snow line during the Last Glaciation was about 4,000 m on the south, east and northeast edges of the plateau and ascended to 5500 m on the hinder northwest of the plateau. The thermal effect of the big plateau massif, the sharp increase of aridity from the southeast rim to the northwest inland area and the abrupt decrease of precipitation during展开更多
The glacial landforms of the Qinghai-Tibetan Plateau (QTP) provide a unique opportunity to research hemispheric and global environmental changes. In this study, we focus on the glacial history of the palaeo-Daocheng...The glacial landforms of the Qinghai-Tibetan Plateau (QTP) provide a unique opportunity to research hemispheric and global environmental changes. In this study, we focus on the glacial history of the palaeo-Daocheng Ice Cap (p-DIC) in the southeastern QTP during the last glacial cycle. Based on field investigations, morphostratigraphy, and surface exposure dating of roche moutonnée, polished surface and moraine debris through the terrestrial cosmogenic nuclides (TCN) ^10Be and ^26Al. We identify glacial deposits of the last deglaciation, with minimum ages of 14.9±1.3-18.7±1.7 ka, the Last Glacial Maximum (LGM) of 24.7±2.2 ka, and the early part of the last glacial period (marine oxygen isotope stage (MIS) 3) of 37.1±3.4-45.2±3.9 ka. Our results show that in this region, the extent of the glacial advance during MIS 3 was larger than that during the traditional LGM (MIS 2). These ages are consistent with prior chronologies, and the ^10Be age is consistent with the ^26Al age for the same sample. Thus, these data provide reliable constraints on climate change in the QTP, during the last glaciation.展开更多
In more than 4 Ga of geological evolution, the Earth has twice gone through extreme climatic perturba- tions, when extensive glaciations occurred, together with alternating warm periods which were accom- panied by atm...In more than 4 Ga of geological evolution, the Earth has twice gone through extreme climatic perturba- tions, when extensive glaciations occurred, together with alternating warm periods which were accom- panied by atmospheric oxygenation. The younger of these two episodes of climatic oscillation preceded the Cambrian "explosion" of metazoan life forms, but similar extreme climatic conditions existed between about 2.4 and 2.2 Ga. Over long time periods, changing solar luminosity and mantle temperatures have played important roles in regulating Earth's climate but both periods of climatic upheaval are associated with supercontinents. Enhanced weathering on the orogenically and thermally buoyed supercontinents would have stripped CO2 from the atmosphere, initiating a cooling trend that resulted in continental glaciation. Ice cover prevented weathering so that CO2 built up once more, causing collapse of the ice sheets and ushering in a warm climatic episode. This negative feedback loop provides a plausible explanation for multiple glaciations of the Early and Late Proterozoic, and their intimate association with sedimentary rocks formed in warm climates. Between each glacial cycle nutrients were flushed into world oceans, stimulating photosynthetic activity and causing oxygenation of the atmosphere. Accommodation for many ancient glacial deposits was provided by rifting but escape from the climatic cycle was predicated on break- up of the supercontinent, when flooded continental margins had a moderating influence on weathering. The geochemistry of Neoproterozoic cap carbonates carries a strong hydrothermal signal, suggesting that they precipitated from deep sea waters, overturned and spilled onto continental shelves at the termination of glaciations. Paleoproterozoic (Huronian) carbonates of the Espanola Formation were probably formed as a result of ponding and evaporation in a hydrothermally influenced, restricted rift setting. Why did metazoan evolution not take off after the Great Oxidation Event of the Paleoproterozoic? The answer may lie in the huge scar left by the -2023 Ma Vredefort impact in South Africa, and in the worldwide organic carbon-rich deposits of the Shunga Event, arresting to the near-extirpation of life and possible radical alteration of the course of Earth history.展开更多
The Gongwang Mountains is situated in the northeast part of Yunnan Plovince. In the mountain, glaciation once occirred above 3100 m a. s. l. in the Quaiernary. The typical glacial remains are mainly concentrated in Ji...The Gongwang Mountains is situated in the northeast part of Yunnan Plovince. In the mountain, glaciation once occirred above 3100 m a. s. l. in the Quaiernary. The typical glacial remains are mainly concentrated in Jiaozishan - and Yaojingtang - Niudongping area. The glacial landforms were mainly cirque, trough valley and lateral moraine. Glacial type was alpine cirque glacier and according to morphogenetic relation of the glacial landforms, the Quaternary glaciation should be separated into two periods: last glaciation (containing two stages of late and maximum glaciation) and penultimate in the Gongwang Mountain in northeast part of Yunnan Province of China.展开更多
A modern research approach and working techniques in hitherto unexamined areas, produced the following results: 1). The tongues of deca- kilometre long Karakorum glaciers belong to temperate ice-streams with an an...A modern research approach and working techniques in hitherto unexamined areas, produced the following results: 1). The tongues of deca- kilometre long Karakorum glaciers belong to temperate ice-streams with an annual meltwater output. The short Aghil glaciers on the contrary are continental, arid and cold. 2). The present-day oscillations of the Karakorum glaciers are related to their own mass, and are contrary to and independent of the actual climate. Only the short glaciers, with steep tongue fronts, show a present-day positive balance. 3). C- dated Late Glacial moraines indicate14 a 400~800 m thick valley glacier at the former confluence point of the K2-, Sarpo Laggo- and Skamri glaciers. 4). From the evidence of transfluence passes with roches moutonnées, striae and the limits of glacial polishing, as well as moraines and erratics, a High Glacial at least 1200 m thick ice-stream network between the Karakorums and the Kuen Lun north slopes was reconstructed. The Shaksgam and Yarkand valleys were occupied by glaciers coming from west Tibet. The lowest-lying moraines are to be found in the foreland down to 2000 m, indicating a depression of the High Glacial (LGM) snowline (ELA) by 1300 m. 5). The approximately 10,000 measurements of the radiation balance at up to heights of 5500 m on K2 indicate that with incoming energy near the solar constant the reflection from snow- covered ice is up to 70% greater than from rock and rock waste surfaces. 6).These results confirm for the very dry western margins of Tibet an almost complete ice sheet cover in an area with subtropical energy balance, conforming with the Ice Age hypothesis of the author which is based upon the presence of a 2.4 million km2 Tibetan inland ice sheet. This inland ice developed for the first time when Tibet was uplifted over the snowline during the early Pleistocene. As the measured subtropical radiation balance shows, it was able to trigger the Quaternary Ice Ages.展开更多
Postulated extreme sea-level rise of up to 1-1.5 km with the late Cryogenian Ghaub deglaciation in Namibia is contentious,as is the great rapidity(<104 yr)of the sea-level rise.Such extreme glacioeustatic events,if...Postulated extreme sea-level rise of up to 1-1.5 km with the late Cryogenian Ghaub deglaciation in Namibia is contentious,as is the great rapidity(<104 yr)of the sea-level rise.Such extreme glacioeustatic events,if real,would have been global and affected all continents.In South Australia,up to six glacial advances and retreats during the late Cryogenian Elatina glaciation indicate a fluctuating ice margin.The latter stage of the Elatina glaciation and the immediate post-glacial environment are examined here for evidence of extreme and rapid sea-level rise.In the central Adelaide Rift Complex,diamictite with faceted and striated clasts occurs at the top of the Elatina Formation<1-2 m beneath the early Ediacaran Nuccaleena Formation’cap carbonate’.One hundred kilometres to the south,~30 m of siltstone and sandstone followed by^6 m of clast-poor diamictite with clasts 10+cm long occur between tidal rhythmites and the cap carbonate.Three hundred kilo metres further south,~70 m of siltsto ne,dolo mitic siltstone and minor dolomite separate tidal rhythmites and early Ediacaran strata.Hence the rhythmites were deposited during a high stand(interstadial or interglacial),not during post-glacial sea-level rise.Storm-generated erosional surfaces within tidal rhythmites at Warren Gorge indicate intermittent rhythmite deposition,and water depth and other palaeoenvironmental factors are uncertain,casting doubt on a published estimate of rapid sea-level rise during rhythmite deposition.The lack of late Cryogenian deeply incised valleys and thick valley-fill deposits in South Australia and central Australia argues against extreme sea-level variations.A hiatus occurred between Elatina deglaciation and deposition of the Nuccaleena cap carbonate,and three palaeomagnetic polarity chrons identified in the cap carbonate imply slow deposition spanning 10^5-10^6 yr.This is supported by independent evidence from magnetic chronostratigraphy for Ediacaran strata in South Australia and California,and by stratigraphic and sedimentological arguments for condensed deposition of cap carbonates.It is concluded that neither extreme nor rapid sea-level rise was associated with late Cryogenian deglaciation in South Australia.展开更多
New dates for last glacial cycle in Tibetan bordering mountains and in East Asia show the glacial extent during the early/middle (MIS3-4) stage is larger than that of the late stage (MIS2) in last glacial cycle. I...New dates for last glacial cycle in Tibetan bordering mountains and in East Asia show the glacial extent during the early/middle (MIS3-4) stage is larger than that of the late stage (MIS2) in last glacial cycle. It is asynchronous with the Northern Hemisphere ice sheets maximum and changes in oceanic circulation that predominately control global climate. In research areas, three seasonal precipitation patterns control the accumulation and ablation of glaciers. The modes of the westerlies and the East Asian mountains/islands in and along the Pacific Ocean are favorable to glacier advance with mainly winter precipitation accumulation. There was a global temperature-decreasing phase in the middle stage (MIS3b, 54-44 ka BP), when the glacier extent was larger than that in Last Glaciation Maximum due to the low temperature combined with high moisture. It is revealed that the Quaternary glaciers not only evolved with localization, but also maybe with globalization. The latest studies show a fact that the developmental characteristics of glaciers in high mountains or islands along the western Pacific Ocean are not in accord with those inland areas. Therefore, it can be concluded that glacier development exhibits regional differences. The study validates the reasonableness of the asynchronous advance theory, and ascertains that both the synchronous and asynchronous advance/retreat of glaciers existed from 30 ka BP to 10 ka BP. It is not suitable to emphasize the synchronicity between global ice-volume and glacier change.展开更多
Objective Northeast China is located in a cold region with high latitude. In the mid-low mountain areas, the existence of Quaternary glacier as well as its range and nature are always controversial. The glacial paleo...Objective Northeast China is located in a cold region with high latitude. In the mid-low mountain areas, the existence of Quaternary glacier as well as its range and nature are always controversial. The glacial paleogeomorphology of Northeast China had been extensively studied and explored. The results revealed that Quaternary glaciers was developed in the northern part of Great Hinggan Ranges and Changbai Mountains. However, some scholars believed that the development of the Quaternary glaciers in China resulted from tectonic coupling and close relation with the elevation of mountains. In Northeast China, glaciation did not occur in any mid-low mountain areas during the Quaternary except the Changbai Mountains where the elevation is more than 2600 m. The question is whether glaciation occurred in the mid-low mountain areas of Northeast China during the Quaternary? In order to clarify this question, this paper reports the Quaternary glacial remains of Tala Mountain, which were newly discovered in Ar Horqin Banner, lnner Mongolia and their age dating.展开更多
Moraine morphology is a valuable indicator of climate change. The glacial deposits of ten valleys were selected in the Parlung Zangbo River Basin, southeastern Tibetan Plateau, to study the glacial characteristics of ...Moraine morphology is a valuable indicator of climate change. The glacial deposits of ten valleys were selected in the Parlung Zangbo River Basin, southeastern Tibetan Plateau, to study the glacial characteristics of the Last Glaciation and the climate change processes as revealed by these moraines. Investigation revealed that a huge moraine ridge was formed by ancient glacier in the Marine Isotope Stage 2 (MIS2), and this main moraine ridge indicates the longest sustained and stable climate. There are at least two smaller moraine ridges that are external extensions of or located at the bottom of the main moraine ridge, indicating that the climate of the glacial stage before MIS2 was severer but the duration was relatively shorter. This distribution may reflect the climate of MIS4 or MIS3b. The glacial valleys show multi-channel, small-scale moraine ridges between the contemporary glacial tongue and the main moraine ridge. Some of these multi-channel mo- raine ridges might be recessional moraine, indicating the significant glacial advance during the Younger Dryas or the Heinrich event. The moraine ridges of the Neoglaciation and the Little Ice Age are near the ends of the contemporary glaciers. Using high-precision system dating, we can fairly well reconstruct the pattern of climate change by studying the shape, extent, and scale characteristics of glacial deposits in southeastern Tibet. This is valuable research to understand the relationship between regional and global climate change.展开更多
The effect of Earth precession angle on a climate is presented here. It is shown that the glaciation epochs occurred only when the precession angle was low. After the continental glaciation formed in the Northern hemi...The effect of Earth precession angle on a climate is presented here. It is shown that the glaciation epochs occurred only when the precession angle was low. After the continental glaciation formed in the Northern hemisphere, Earth’s spherecal symmetry was disrupted and its precession angle increased drastically. As a result, a drastic and rapid climate warm-up occurred, the glaciers melted down and an interglacial stadial1 began. Subsequently, affected by the Lunar-Solar gravity pull on the Earth’s equatorial swelling, the precession angle gradually decreased and a new cooling-down phase occurred. As a result, there was nonlinear oscillation of Earth’s climate with periods on the order of 100 - 120 MY.展开更多
The area around Cangshan Mountain, located on the southeastern fringes of the Tibetan Plateau, is a key region in terms of revealing the processes involved in the uplifting of the Tibetan Plateau, plus its environment...The area around Cangshan Mountain, located on the southeastern fringes of the Tibetan Plateau, is a key region in terms of revealing the processes involved in the uplifting of the Tibetan Plateau, plus its environmental effects. Based on systemic field and laboratory work, this study uncovers the step-like geomorphologic structure, characteristics and processes revealed in the Cangshan Mountain area, to argue for the formation and development of the Quaternary glaciation there. The results indicate that there were two paleo-glaciations in the area, which were the early and late Dali Glaciations, and that these occurred during the time periods 5.76 × 104 aBP and 1.6 × 104 aBP respectively, being the southernmost paleo-glaciations to have taken place in China. Two step-like paleo-planation surfaces were formed vertically at the mountain (that is, at the summit of Cangshan, which is 3800 to 4000 m above sea level (a.s.l) in height;and at the paleo-glacial and peri-glacial active zones: 3700 to 3900 m a.s.l. in height). Meanwhile three widespread erosion surfaces can be identified at about 2900 to 3500 m, 3000 to 3100 m and 2450 to 2550 m a.s.l. in height;three fluvial fans developed on the landform at about 2250 to 2200 m, 2200 to 2150 m and 2150 to 2100 m a.s.l. in height respectively, and lacustrine relief developed surrounding the Erhai Lake.展开更多
Silicified and phosphatized microfossils preserved in the Ediacaran Doushantuo Formation in South China provide key evidence for the early radiation of eukaryotes after the Neoproterozoic global glaciations.
Detailed sedimentological analysis of the Pokaran Boulder Bed,representing the most basal unit of the Neoproterozoic-Lower Cambrian Marwar Supergroup,clearly indicates its glacial origin.The glacial sediments are inte...Detailed sedimentological analysis of the Pokaran Boulder Bed,representing the most basal unit of the Neoproterozoic-Lower Cambrian Marwar Supergroup,clearly indicates its glacial origin.The glacial sediments are interpreted as an ice-contact submarine fan deposit.Based on the detrital and inherited zircon population of the Marwar Supergroup sediments and interlayered pyroclastic deposits,a Marinoan cryochron of the Cryogenian Period is envisaged for the Pokaran Boulder Bed.The well-preserved Ediacaran elements in the post-glacial sedimentary succession also support a Cryogenian to Early Cambrian age of the Marwar Supergroup.The glacial deposition at the base of the Marwar Supergroup strengthens the regional correlation between the studied sediments with the Lesser Himalayan Blaini-Krol-Tal sediments and the Haqf Supergroup of Oman.The available zircon ages and paleomagnetic data of the Malani Igneous suite,along with the Marinoan glacial deposits,detrital zircon ages,and Ediacaran fossil elements of the Marwar Supergroup add significant information to the Neoproterozoic Earth history.展开更多
The term of ''Tali Glaciation'' is nominated from Massif Diancang in Yunnan Province. The confusing process of the term''s being put forward is confirmed through literature checking. Based on s...The term of ''Tali Glaciation'' is nominated from Massif Diancang in Yunnan Province. The confusing process of the term''s being put forward is confirmed through literature checking. Based on several times of field trip, the glacial landforms in this region are studied in detail, and the magnitude of the glaciation was determined. According to the numerical ages from TL, AIMS ^(14)C and OSL dating, the earliest glacial advance on Massif Diancang occurred at 30—40 ka BP, followed by the advances at the last stage of the last glaciation, the late glacial and neoglations in turn, until glaciers vanished at 1.2—1.5 ca. a BP in this region. It can be concluded that glaciers were limited above 3600 m a.s.l., and no glaciers existed on the lower part and adjacent mountains since the last glaciation.展开更多
The northeastern Sichuan area in the northern Yangtze margin has unique Ediacaran geological records,especially the Doushantuo Formation(DST),and become a hot research area in recent years.However,the Cryogenian-Ediac...The northeastern Sichuan area in the northern Yangtze margin has unique Ediacaran geological records,especially the Doushantuo Formation(DST),and become a hot research area in recent years.However,the Cryogenian-Ediacaran(C-E)boundary has not been precisely identified,which restricts the in-depth study of geological information during this crucial transitional period and is unfavorable for a systematic and complete understanding of the Yangtze Block and even the global paleogeographic pattern.This study conducted stratigraphy,sedimentology,and chronostratigraphy to establish the stratigraphic framework and sedimentary evolution of the C-E transition strata in northeastern Sichuan.The results showed that the Ediacaran sediments,without the cap dolomite,unconformably overlaid the Cryogenian sediments in the studied area.The Member II of the DST,characterized by 50-160 m of red-green sandstone(approximately equivalent to the original Chengkou“Guanyinya Formation”),directly overlaid the Cryogenian sediments and displayed a 623±2.3 Ma maximum depositional age from the detrital zircon U-Pb dating.Regional stratigraphic correlations indicate that the C-E transition strata in northeastern Sichuan had a consistent lithological association and sedimentary sequence characteristics but differed from the Three Gorges.Typically,the upper Nantuo massive glacial diamictites transition to the icebergs rafted lonestone-bearing mudstones at the top,then change upward to DST barrier coast sandstones.The proposed DST of the northeastern Sichuan Basin was divided into three lithostratigraphic members without the regional Member I cap dolomite:(i)Member II purple-red,gray-green sandstone strata,(ii)MemberⅢblack mudstone strata,and(iii)Member IV P-Mn bearing strata.During the C-E transition,the study area experienced(i)the global deglaciation stage in the terminal Marinoan glaciation and(ii)the filling-leveling up stage with clastic rocks in the early Ediacaran.Overall,the early Ediacaran of northeastern Sichuan succeeded the paleogeographic features of the late Cryogenian.展开更多
文摘The Qinghai-Tibet Plateau has developed into a vast fortress-like structure that has recently presented a barrier limiting the egress of moisture-bearing air masses. Lower sea levels also affected the climate. This paper examines their effects on the current evidence for the timing of past glaciations, and the development and evolution of permafrost. There are two theories regarding glaciation on the Qinghai-Tibet Plateau (QTP). Kuhle suggested that there was a major, unified ice-cap during the Last Glacial Maximum (LGM), whereas major Chinese glaciologists and others have not found or verified reliable evidence for this per se. There have been limited glaciations during the last 1.1 Ma B.P. but with increasing dominance of permafrost including both primary and secondary tessellons infilled with rock, sand or loess. The East Asia Monsoon was absent in this area during the main LGM, starting at 〉30 ka B.P. on the plateau, with sufficient precipitation reappearing about 19 ka B.P. to produce ice-wedges. A weak Megathermal event took place between 8.5 and 6.0 ka B.P., followed by Neoglacial events exhibiting peak cold at 5.3-4.7 ka, 3.1-1.5 ka, and the Little Ice Age (LIA) after 0.7 ka. Subsequently, mean annual air temperature has increased by 4 ℃.
文摘The glacial morphology of southern South American presents invaluable evidence to reconstruct former glacier behaviour and its relation to climate and environmental changes. However, there are still spatial and temporal gaps in the reconstruction of the Holocene Patagonian glacial landscape. Here we present the first geomorphological record for the Sierra Baguales Mountain Range(SBMR), forming the eastern foothills of the Southern Patagonian Andes 200 km from the Pacific coast. This area is topographically isolated from the Southern Patagonian Ice Field(SPIF), and is affected by the Westerly Winds. The study area shows evidence of ice sheet and alpine glaciations related to Andean uplift,which caused a marked climatic contrast between its western and eastern flanks since the Last Glacial Maximum(LGM). The regional rock mass strength and precipitation gradient acted as a controlling factor in the glacial cirque distribution and sizes, as well as in the development of glaciation types. We report new radiocarbon dates associated with warm/dry to cold/wet climatic changes during the middle Holocene, when former small alpine glaciers were located in the uppermost section of the SBMR basins, and eventually converged to form a small ice field or a composite valley glacier at lower elevations.This can be explained by an estimated regional temperature drop of 3.8°C±0.8°C, based on a 585±26m Equilibrium Line Altitude(ELA) descent, inferred by geomorphological evidence and the Accumulation Area Ratio(AAR), in addition to a free-air adiabatic lapse rate. Subsequently, the glaciers receded due to climatic factors including a rise in temperature, as well as non-climatic factors, mainly the glacier bedrock topography.
基金supported by the Ministry of Science and Technology(No.2011CB808806)the National Natural Science Foundation of China (No. 41402026)
文摘The Nanhua basin in South China hosts well-preserved middle-late Neoproterozoic sedimentary and volcanic rocks that are critical for studying the basin evolution, the breakup of the supercontinent Rodinia, the nature and dynamics of the "snowball" Earth and diversification of metazoans. Establishing a stratigraphic framework is crucial for better understanding the interactions between tectonic, paleoclimatic and biotic events recorded in the Nanhua basin, but existing stratigraphic correlations remain debated, particularly for pre-Ediacaran strata. Here we report new Laser Ablation Inductively Coupled Plasma Mass Spectrometry(LA-ICPMS) U-Pb zircon ages from the middle and topmost Wuqiangxi Formation(the upper stratigraphic unit of the Banxi Group) in Siduping, Hunan Province, South China. Two samples show similar age distribution, with two major peaks at ca. 820 Ma and 780 Ma and one minor peak at ca. 910 Ma, suggesting that the Wuqiangxi sandstone was mainly sourced from Neoproterozoic rocks. Two major age peaks correspond to two phases of magmatic events associated with the rifting of the Nanhua basin, and the minor peak at ca. 910 Ma may correspond to the Shuangxiwu volcanic arc magmatism, which represents pre-collision/amalgamation subduction on the southeastern margin of the Yangtze Block. The youngest zircon group from the topmost Wuqiangxi Formation has a weighted mean age of 714.6±5.2 Ma, which is likely close to the depositional age of the uppermost Banxi Group. This age, along with the ages reported from other sections, constrains that the Banxi Group was deposited between ca. 820 Ma and ca. 715 Ma. The age of 714.6±5.2 Ma from the top of the Wuqiangxi Formation is indistinguishable with the SIMS U-Pb age of 715.9± 2.8 Ma from the upper Gongdong Formation in the Sibao village section of northern Guangxi, South China. It is also, within uncertainties, overlapped with two TIMS U-Pb ages from pre-Sturtian strata in Oman and Canada. These ages indicate that the Jiangkou(Sturtian) glaciation in South China started at ca. 715 Ma instead of ca. 780 Ma and support a globally synchronous initiation of the Sturtian glaciation at ca. 715 Ma.
基金funded by the National 973-Program(Project Nos.2012CB416602,2006CB403508)National Natural Science Foundation of China(Nos.40352003,40425006,40373007)Frontier Field Project of the State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences
文摘This paper compiles lithostratigraphic and geochronological data obtained for the Palaeoproterozoic glacial diamictite-bearing successions,and thereby provides insights into understanding the geological processes causing the Huronian Glaciation Event.The majority of evidence for appearances of this glaciation event can be related to the Kenorland supercontinent breakup,allied to significant atmospheric change,as well as blooms of biogeochemical oxygenic photosynthesis.In this paper,the Huronian Glaciation Event is constrained to have occurred synchronously during 2.29-2.25 Ga,accompanied by dramatic environmental changes characteristic of the Great Oxidation Event which includes the pre- 2.3 Ga hydrosphere oxidation and the post-2.3 Ga atmosphere oxygenation.
文摘Late Pleistocene glaciation was restricted to only a few high mountains in eastern China. The Gongwang mountains constitute one of the typical places once glaciated. Geomorphic mapping of the area and the TL dating provides evidence for at least four distinct glaciations. YJT-Ⅰ glacial advance occurred about 100 ka BP and two TL absolute ages (101,100 ± 7780 a BP; 104,000± 8300 a BP) indicate this advance happened during the Penultimale Glaciation. The early stage glacial advance (YJT-Ⅱ advance) during the last glaciation occurred about 40,920 ± 3400 a BP. The last glacial maximum advance (YJT-Ⅲ advance) about 18-25 ka BP, which sustained by two TL ages (18,230 ±1420 a BP; 25,420 ± 2110 a BP). The Penultimale and the early stage glaciations were more extensive and the last glacial maximum (LGM) and the late-glacial period (YJT-Ⅳ advance, 10 ka BP) were progressively less extensive. Correlated with the other mountains in eastern China, these glacial advances in the Gongwang mountains just like the advances in the western part such as Diancang mountains, Yulong mountains of Yunnan Province and the glacier series are more complete than the adjacent mid-latitude regions such as Taibai mountain and Taiwan mountains and are roughly representative of climate changes during the last glacial cycle in Yunnan Province.
文摘Since the late 1950’s, many Chinese scientists have explored the remains of the Quaternary glaciation in the Qinghai-Xizang (Tibet) Plateau and its surrounding mountains. In the main, 3-4 glaciations have been recognized. The largest one occurred in the Late Middle Pleistocene with piedmont glaciers, ice caps and trellis valley glaciers in many high peak regions. But here is no evidence of a unified ice sheet covering the whole plateau as described by M. Kuhle. Due to the further uplifting of the Himalayas and Qinghai-Xizang Plateau the climate became progressively drier, diminishing the extension of glaciers during the Late Pleistocene. The elevation of the snow line during the Last Glaciation was about 4,000 m on the south, east and northeast edges of the plateau and ascended to 5500 m on the hinder northwest of the plateau. The thermal effect of the big plateau massif, the sharp increase of aridity from the southeast rim to the northwest inland area and the abrupt decrease of precipitation during
基金supported by the National Natural Science Foundation of China (Grant No.40572097)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) (Grant No.164320H116)by the Yulong Mountain tourism development and management committee special project
文摘The glacial landforms of the Qinghai-Tibetan Plateau (QTP) provide a unique opportunity to research hemispheric and global environmental changes. In this study, we focus on the glacial history of the palaeo-Daocheng Ice Cap (p-DIC) in the southeastern QTP during the last glacial cycle. Based on field investigations, morphostratigraphy, and surface exposure dating of roche moutonnée, polished surface and moraine debris through the terrestrial cosmogenic nuclides (TCN) ^10Be and ^26Al. We identify glacial deposits of the last deglaciation, with minimum ages of 14.9±1.3-18.7±1.7 ka, the Last Glacial Maximum (LGM) of 24.7±2.2 ka, and the early part of the last glacial period (marine oxygen isotope stage (MIS) 3) of 37.1±3.4-45.2±3.9 ka. Our results show that in this region, the extent of the glacial advance during MIS 3 was larger than that during the traditional LGM (MIS 2). These ages are consistent with prior chronologies, and the ^10Be age is consistent with the ^26Al age for the same sample. Thus, these data provide reliable constraints on climate change in the QTP, during the last glaciation.
基金supported by funds from the Natural Science and Engineering Council of Canada
文摘In more than 4 Ga of geological evolution, the Earth has twice gone through extreme climatic perturba- tions, when extensive glaciations occurred, together with alternating warm periods which were accom- panied by atmospheric oxygenation. The younger of these two episodes of climatic oscillation preceded the Cambrian "explosion" of metazoan life forms, but similar extreme climatic conditions existed between about 2.4 and 2.2 Ga. Over long time periods, changing solar luminosity and mantle temperatures have played important roles in regulating Earth's climate but both periods of climatic upheaval are associated with supercontinents. Enhanced weathering on the orogenically and thermally buoyed supercontinents would have stripped CO2 from the atmosphere, initiating a cooling trend that resulted in continental glaciation. Ice cover prevented weathering so that CO2 built up once more, causing collapse of the ice sheets and ushering in a warm climatic episode. This negative feedback loop provides a plausible explanation for multiple glaciations of the Early and Late Proterozoic, and their intimate association with sedimentary rocks formed in warm climates. Between each glacial cycle nutrients were flushed into world oceans, stimulating photosynthetic activity and causing oxygenation of the atmosphere. Accommodation for many ancient glacial deposits was provided by rifting but escape from the climatic cycle was predicated on break- up of the supercontinent, when flooded continental margins had a moderating influence on weathering. The geochemistry of Neoproterozoic cap carbonates carries a strong hydrothermal signal, suggesting that they precipitated from deep sea waters, overturned and spilled onto continental shelves at the termination of glaciations. Paleoproterozoic (Huronian) carbonates of the Espanola Formation were probably formed as a result of ponding and evaporation in a hydrothermally influenced, restricted rift setting. Why did metazoan evolution not take off after the Great Oxidation Event of the Paleoproterozoic? The answer may lie in the huge scar left by the -2023 Ma Vredefort impact in South Africa, and in the worldwide organic carbon-rich deposits of the Shunga Event, arresting to the near-extirpation of life and possible radical alteration of the course of Earth history.
文摘The Gongwang Mountains is situated in the northeast part of Yunnan Plovince. In the mountain, glaciation once occirred above 3100 m a. s. l. in the Quaiernary. The typical glacial remains are mainly concentrated in Jiaozishan - and Yaojingtang - Niudongping area. The glacial landforms were mainly cirque, trough valley and lateral moraine. Glacial type was alpine cirque glacier and according to morphogenetic relation of the glacial landforms, the Quaternary glaciation should be separated into two periods: last glaciation (containing two stages of late and maximum glaciation) and penultimate in the Gongwang Mountain in northeast part of Yunnan Province of China.
文摘A modern research approach and working techniques in hitherto unexamined areas, produced the following results: 1). The tongues of deca- kilometre long Karakorum glaciers belong to temperate ice-streams with an annual meltwater output. The short Aghil glaciers on the contrary are continental, arid and cold. 2). The present-day oscillations of the Karakorum glaciers are related to their own mass, and are contrary to and independent of the actual climate. Only the short glaciers, with steep tongue fronts, show a present-day positive balance. 3). C- dated Late Glacial moraines indicate14 a 400~800 m thick valley glacier at the former confluence point of the K2-, Sarpo Laggo- and Skamri glaciers. 4). From the evidence of transfluence passes with roches moutonnées, striae and the limits of glacial polishing, as well as moraines and erratics, a High Glacial at least 1200 m thick ice-stream network between the Karakorums and the Kuen Lun north slopes was reconstructed. The Shaksgam and Yarkand valleys were occupied by glaciers coming from west Tibet. The lowest-lying moraines are to be found in the foreland down to 2000 m, indicating a depression of the High Glacial (LGM) snowline (ELA) by 1300 m. 5). The approximately 10,000 measurements of the radiation balance at up to heights of 5500 m on K2 indicate that with incoming energy near the solar constant the reflection from snow- covered ice is up to 70% greater than from rock and rock waste surfaces. 6).These results confirm for the very dry western margins of Tibet an almost complete ice sheet cover in an area with subtropical energy balance, conforming with the Ice Age hypothesis of the author which is based upon the presence of a 2.4 million km2 Tibetan inland ice sheet. This inland ice developed for the first time when Tibet was uplifted over the snowline during the early Pleistocene. As the measured subtropical radiation balance shows, it was able to trigger the Quaternary Ice Ages.
文摘Postulated extreme sea-level rise of up to 1-1.5 km with the late Cryogenian Ghaub deglaciation in Namibia is contentious,as is the great rapidity(<104 yr)of the sea-level rise.Such extreme glacioeustatic events,if real,would have been global and affected all continents.In South Australia,up to six glacial advances and retreats during the late Cryogenian Elatina glaciation indicate a fluctuating ice margin.The latter stage of the Elatina glaciation and the immediate post-glacial environment are examined here for evidence of extreme and rapid sea-level rise.In the central Adelaide Rift Complex,diamictite with faceted and striated clasts occurs at the top of the Elatina Formation<1-2 m beneath the early Ediacaran Nuccaleena Formation’cap carbonate’.One hundred kilometres to the south,~30 m of siltstone and sandstone followed by^6 m of clast-poor diamictite with clasts 10+cm long occur between tidal rhythmites and the cap carbonate.Three hundred kilo metres further south,~70 m of siltsto ne,dolo mitic siltstone and minor dolomite separate tidal rhythmites and early Ediacaran strata.Hence the rhythmites were deposited during a high stand(interstadial or interglacial),not during post-glacial sea-level rise.Storm-generated erosional surfaces within tidal rhythmites at Warren Gorge indicate intermittent rhythmite deposition,and water depth and other palaeoenvironmental factors are uncertain,casting doubt on a published estimate of rapid sea-level rise during rhythmite deposition.The lack of late Cryogenian deeply incised valleys and thick valley-fill deposits in South Australia and central Australia argues against extreme sea-level variations.A hiatus occurred between Elatina deglaciation and deposition of the Nuccaleena cap carbonate,and three palaeomagnetic polarity chrons identified in the cap carbonate imply slow deposition spanning 10^5-10^6 yr.This is supported by independent evidence from magnetic chronostratigraphy for Ediacaran strata in South Australia and California,and by stratigraphic and sedimentological arguments for condensed deposition of cap carbonates.It is concluded that neither extreme nor rapid sea-level rise was associated with late Cryogenian deglaciation in South Australia.
基金N ationalN aturalScience Foundation ofChina,N o.40071015
文摘New dates for last glacial cycle in Tibetan bordering mountains and in East Asia show the glacial extent during the early/middle (MIS3-4) stage is larger than that of the late stage (MIS2) in last glacial cycle. It is asynchronous with the Northern Hemisphere ice sheets maximum and changes in oceanic circulation that predominately control global climate. In research areas, three seasonal precipitation patterns control the accumulation and ablation of glaciers. The modes of the westerlies and the East Asian mountains/islands in and along the Pacific Ocean are favorable to glacier advance with mainly winter precipitation accumulation. There was a global temperature-decreasing phase in the middle stage (MIS3b, 54-44 ka BP), when the glacier extent was larger than that in Last Glaciation Maximum due to the low temperature combined with high moisture. It is revealed that the Quaternary glaciers not only evolved with localization, but also maybe with globalization. The latest studies show a fact that the developmental characteristics of glaciers in high mountains or islands along the western Pacific Ocean are not in accord with those inland areas. Therefore, it can be concluded that glacier development exhibits regional differences. The study validates the reasonableness of the asynchronous advance theory, and ascertains that both the synchronous and asynchronous advance/retreat of glaciers existed from 30 ka BP to 10 ka BP. It is not suitable to emphasize the synchronicity between global ice-volume and glacier change.
基金supported by the China Geological Survey(grant Nos.DD20160048-04 and DD20179402-01 DD20179402-02)the National Natural Science Foundation of China(grant No.41702032)
文摘Objective Northeast China is located in a cold region with high latitude. In the mid-low mountain areas, the existence of Quaternary glacier as well as its range and nature are always controversial. The glacial paleogeomorphology of Northeast China had been extensively studied and explored. The results revealed that Quaternary glaciers was developed in the northern part of Great Hinggan Ranges and Changbai Mountains. However, some scholars believed that the development of the Quaternary glaciers in China resulted from tectonic coupling and close relation with the elevation of mountains. In Northeast China, glaciation did not occur in any mid-low mountain areas during the Quaternary except the Changbai Mountains where the elevation is more than 2600 m. The question is whether glaciation occurred in the mid-low mountain areas of Northeast China during the Quaternary? In order to clarify this question, this paper reports the Quaternary glacial remains of Tala Mountain, which were newly discovered in Ar Horqin Banner, lnner Mongolia and their age dating.
基金supported by the"Strategic Priority Research Program(B)"of the Chinese Academy of Sciences(Grant No.XDB03030100)the National Natural Sciences Foundation of China(Grant No.41371080)
文摘Moraine morphology is a valuable indicator of climate change. The glacial deposits of ten valleys were selected in the Parlung Zangbo River Basin, southeastern Tibetan Plateau, to study the glacial characteristics of the Last Glaciation and the climate change processes as revealed by these moraines. Investigation revealed that a huge moraine ridge was formed by ancient glacier in the Marine Isotope Stage 2 (MIS2), and this main moraine ridge indicates the longest sustained and stable climate. There are at least two smaller moraine ridges that are external extensions of or located at the bottom of the main moraine ridge, indicating that the climate of the glacial stage before MIS2 was severer but the duration was relatively shorter. This distribution may reflect the climate of MIS4 or MIS3b. The glacial valleys show multi-channel, small-scale moraine ridges between the contemporary glacial tongue and the main moraine ridge. Some of these multi-channel mo- raine ridges might be recessional moraine, indicating the significant glacial advance during the Younger Dryas or the Heinrich event. The moraine ridges of the Neoglaciation and the Little Ice Age are near the ends of the contemporary glaciers. Using high-precision system dating, we can fairly well reconstruct the pattern of climate change by studying the shape, extent, and scale characteristics of glacial deposits in southeastern Tibet. This is valuable research to understand the relationship between regional and global climate change.
文摘The effect of Earth precession angle on a climate is presented here. It is shown that the glaciation epochs occurred only when the precession angle was low. After the continental glaciation formed in the Northern hemisphere, Earth’s spherecal symmetry was disrupted and its precession angle increased drastically. As a result, a drastic and rapid climate warm-up occurred, the glaciers melted down and an interglacial stadial1 began. Subsequently, affected by the Lunar-Solar gravity pull on the Earth’s equatorial swelling, the precession angle gradually decreased and a new cooling-down phase occurred. As a result, there was nonlinear oscillation of Earth’s climate with periods on the order of 100 - 120 MY.
文摘The area around Cangshan Mountain, located on the southeastern fringes of the Tibetan Plateau, is a key region in terms of revealing the processes involved in the uplifting of the Tibetan Plateau, plus its environmental effects. Based on systemic field and laboratory work, this study uncovers the step-like geomorphologic structure, characteristics and processes revealed in the Cangshan Mountain area, to argue for the formation and development of the Quaternary glaciation there. The results indicate that there were two paleo-glaciations in the area, which were the early and late Dali Glaciations, and that these occurred during the time periods 5.76 × 104 aBP and 1.6 × 104 aBP respectively, being the southernmost paleo-glaciations to have taken place in China. Two step-like paleo-planation surfaces were formed vertically at the mountain (that is, at the summit of Cangshan, which is 3800 to 4000 m above sea level (a.s.l) in height;and at the paleo-glacial and peri-glacial active zones: 3700 to 3900 m a.s.l. in height). Meanwhile three widespread erosion surfaces can be identified at about 2900 to 3500 m, 3000 to 3100 m and 2450 to 2550 m a.s.l. in height;three fluvial fans developed on the landform at about 2250 to 2200 m, 2200 to 2150 m and 2150 to 2100 m a.s.l. in height respectively, and lacustrine relief developed surrounding the Erhai Lake.
文摘Silicified and phosphatized microfossils preserved in the Ediacaran Doushantuo Formation in South China provide key evidence for the early radiation of eukaryotes after the Neoproterozoic global glaciations.
文摘Detailed sedimentological analysis of the Pokaran Boulder Bed,representing the most basal unit of the Neoproterozoic-Lower Cambrian Marwar Supergroup,clearly indicates its glacial origin.The glacial sediments are interpreted as an ice-contact submarine fan deposit.Based on the detrital and inherited zircon population of the Marwar Supergroup sediments and interlayered pyroclastic deposits,a Marinoan cryochron of the Cryogenian Period is envisaged for the Pokaran Boulder Bed.The well-preserved Ediacaran elements in the post-glacial sedimentary succession also support a Cryogenian to Early Cambrian age of the Marwar Supergroup.The glacial deposition at the base of the Marwar Supergroup strengthens the regional correlation between the studied sediments with the Lesser Himalayan Blaini-Krol-Tal sediments and the Haqf Supergroup of Oman.The available zircon ages and paleomagnetic data of the Malani Igneous suite,along with the Marinoan glacial deposits,detrital zircon ages,and Ediacaran fossil elements of the Marwar Supergroup add significant information to the Neoproterozoic Earth history.
基金Supported by the National Major Base Researches Project (Grant No. 2005CB422000)the National Natural Science Foundation of China (Grant Nos. 0571021 and 40671023)the Hundred Talents Plan of CAS
文摘The term of ''Tali Glaciation'' is nominated from Massif Diancang in Yunnan Province. The confusing process of the term''s being put forward is confirmed through literature checking. Based on several times of field trip, the glacial landforms in this region are studied in detail, and the magnitude of the glaciation was determined. According to the numerical ages from TL, AIMS ^(14)C and OSL dating, the earliest glacial advance on Massif Diancang occurred at 30—40 ka BP, followed by the advances at the last stage of the last glaciation, the late glacial and neoglations in turn, until glaciers vanished at 1.2—1.5 ca. a BP in this region. It can be concluded that glaciers were limited above 3600 m a.s.l., and no glaciers existed on the lower part and adjacent mountains since the last glaciation.
基金supported by the China Geological Survey project(DD20221649)the National Natural Science Foundation of China(Nos.U19B6003,42072135,and 42172119)+1 种基金Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2021jcyj-msxm X0023)Open Fund(DGERA 20211105)of Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources,Chengdu University of Technology。
文摘The northeastern Sichuan area in the northern Yangtze margin has unique Ediacaran geological records,especially the Doushantuo Formation(DST),and become a hot research area in recent years.However,the Cryogenian-Ediacaran(C-E)boundary has not been precisely identified,which restricts the in-depth study of geological information during this crucial transitional period and is unfavorable for a systematic and complete understanding of the Yangtze Block and even the global paleogeographic pattern.This study conducted stratigraphy,sedimentology,and chronostratigraphy to establish the stratigraphic framework and sedimentary evolution of the C-E transition strata in northeastern Sichuan.The results showed that the Ediacaran sediments,without the cap dolomite,unconformably overlaid the Cryogenian sediments in the studied area.The Member II of the DST,characterized by 50-160 m of red-green sandstone(approximately equivalent to the original Chengkou“Guanyinya Formation”),directly overlaid the Cryogenian sediments and displayed a 623±2.3 Ma maximum depositional age from the detrital zircon U-Pb dating.Regional stratigraphic correlations indicate that the C-E transition strata in northeastern Sichuan had a consistent lithological association and sedimentary sequence characteristics but differed from the Three Gorges.Typically,the upper Nantuo massive glacial diamictites transition to the icebergs rafted lonestone-bearing mudstones at the top,then change upward to DST barrier coast sandstones.The proposed DST of the northeastern Sichuan Basin was divided into three lithostratigraphic members without the regional Member I cap dolomite:(i)Member II purple-red,gray-green sandstone strata,(ii)MemberⅢblack mudstone strata,and(iii)Member IV P-Mn bearing strata.During the C-E transition,the study area experienced(i)the global deglaciation stage in the terminal Marinoan glaciation and(ii)the filling-leveling up stage with clastic rocks in the early Ediacaran.Overall,the early Ediacaran of northeastern Sichuan succeeded the paleogeographic features of the late Cryogenian.