Glaciers in the Shaksgam valley provide important fresh water resources to neighbourhood livelihood. Repeated creation of the glacier inventories is important to assess glacier–climate interactions and to predict fut...Glaciers in the Shaksgam valley provide important fresh water resources to neighbourhood livelihood. Repeated creation of the glacier inventories is important to assess glacier–climate interactions and to predict future runoff from glacierized catchments. For this study, we applied a multi-criteria technique to map the glaciers of the Shaksgam valley of China, using Landsat Thematic Mapper(Landsat TM)(2009) and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model version two(ASTER GDEM V2) data. The geomorphometric parameters slope, plan, and profile curvature were generated from ASTER GDEM. Then they were organized in similar surface groups using cluster analysis. For accurate mapping of supraglacial debris area, clustering results were combined with a thermal mask generated from the Landsat TM thermal band. The debris-free glaciers were identified using the band ratio(TM band 4/TM band 5) technique. Final vector maps of the glaciers were created using overlay tools in a geographic information system(GIS).Accuracy of the generated glacier outlines was assessed through comparison with glacier outlines based on the Second Chinese Glacier Inventory(SCGI) data and glacier outlines created from high-resolution Google Earth? images of 2009. Glacier areas derived using the proposed approach were 3% less than in the reference datasets. Furthermore, final glacier maps show satisfactory mapping results, but identification of the debris-cover glacier terminus(covered by thick debris layer) is still problematic. Therefore, manual editing was necessary to improve the final glacier maps.展开更多
Two field surveys on the thickness of Hei Valley No. 8 Glacier (H8) on the southern slope of Mount Bogda in the Tianshan Mountains using ground-penetration radar (GPR) were carried out in August 2008 and Septembe...Two field surveys on the thickness of Hei Valley No. 8 Glacier (H8) on the southern slope of Mount Bogda in the Tianshan Mountains using ground-penetration radar (GPR) were carried out in August 2008 and September 2009. Comparisons of the observed change in glacier thickness using GPR and ablation stakes suggest that GPR observations have high accuracy. Thus, the thickness change for H8 during 2008-2009 was estimated using GPR data. Digital elevation models obtained from topographic maps and the Shuttle Radar Topography Mission were used to analyze ice-elevation changes of H8 between 1 969 and 2 000 m a.s.l.. The results show that H8 has continually thinned, and the thinning rate has increased gradually. The thinning of ablation areas of H8 increased from 0.42a=0.56 m/a in 1969-2000 to 1.474-0.79 m/a in 2000-2008, and then accelerated to 1.924-0.98 m/a in 2008-2009. The retreat of the glacier terminus has had a similar pattern. The distribution of the temperate-ice zone of H8 as determined from GPR data also implies that H8 has experienced strong melting from 2008 to 2009, which indicates that temperature rises have not only enhanced glacial sur- face melting and prolonged melting periods, but also changed the englacial structure and increased the water content of glacier, both of which probably lead to the acceleration of glacial thinning.展开更多
文摘Glaciers in the Shaksgam valley provide important fresh water resources to neighbourhood livelihood. Repeated creation of the glacier inventories is important to assess glacier–climate interactions and to predict future runoff from glacierized catchments. For this study, we applied a multi-criteria technique to map the glaciers of the Shaksgam valley of China, using Landsat Thematic Mapper(Landsat TM)(2009) and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model version two(ASTER GDEM V2) data. The geomorphometric parameters slope, plan, and profile curvature were generated from ASTER GDEM. Then they were organized in similar surface groups using cluster analysis. For accurate mapping of supraglacial debris area, clustering results were combined with a thermal mask generated from the Landsat TM thermal band. The debris-free glaciers were identified using the band ratio(TM band 4/TM band 5) technique. Final vector maps of the glaciers were created using overlay tools in a geographic information system(GIS).Accuracy of the generated glacier outlines was assessed through comparison with glacier outlines based on the Second Chinese Glacier Inventory(SCGI) data and glacier outlines created from high-resolution Google Earth? images of 2009. Glacier areas derived using the proposed approach were 3% less than in the reference datasets. Furthermore, final glacier maps show satisfactory mapping results, but identification of the debris-cover glacier terminus(covered by thick debris layer) is still problematic. Therefore, manual editing was necessary to improve the final glacier maps.
基金funded by the Project of the Knowledge Inno-vation of Chinese Academy of Sciences(No.KZCX2-YW-GJ04)Postdoctoral Projects of China(Nos.2012M 521817 and 2013M 5320 96)
文摘Two field surveys on the thickness of Hei Valley No. 8 Glacier (H8) on the southern slope of Mount Bogda in the Tianshan Mountains using ground-penetration radar (GPR) were carried out in August 2008 and September 2009. Comparisons of the observed change in glacier thickness using GPR and ablation stakes suggest that GPR observations have high accuracy. Thus, the thickness change for H8 during 2008-2009 was estimated using GPR data. Digital elevation models obtained from topographic maps and the Shuttle Radar Topography Mission were used to analyze ice-elevation changes of H8 between 1 969 and 2 000 m a.s.l.. The results show that H8 has continually thinned, and the thinning rate has increased gradually. The thinning of ablation areas of H8 increased from 0.42a=0.56 m/a in 1969-2000 to 1.474-0.79 m/a in 2000-2008, and then accelerated to 1.924-0.98 m/a in 2008-2009. The retreat of the glacier terminus has had a similar pattern. The distribution of the temperate-ice zone of H8 as determined from GPR data also implies that H8 has experienced strong melting from 2008 to 2009, which indicates that temperature rises have not only enhanced glacial sur- face melting and prolonged melting periods, but also changed the englacial structure and increased the water content of glacier, both of which probably lead to the acceleration of glacial thinning.